Quercetin effect on gene expression in HepG2 hepatocellular cancer cells
Ontology highlight
ABSTRACT: Quercetin is a flavonol modifying numerous cell processes with potent antiproliferative effects on cancer cell-lines. The aim of this study was to explore by gene-array analysis the effect of quercetin on cancer-related gene expression in HepG2 cells, followed by verification with RT-PCR and analysis of the expected phenotypic changes (migration, cell cycle, cell proliferation). Quercetin induces significant changes on cell-adhesion related genes, leading to reduced migratory capacity and disorganization of the actin cytoskeleton. Several genes related to DNA functions, cellular metabolism and signal-transducer activities were also modified, while an early effect on G–protein related cascades possibly via protease-activated receptor 2 and phospholipase C-γ1 was identified. Cyclin-D associated events in G1 and ubiquitin-dependent degradation of cyclin-D1 were also affected, resulting in cell-cycle arrest without activation of apoptosis pathways. In conclusion quercetin (3μM) exerts its cellular effects by modifying numerous genes related to mechanisms involved in cancer initiation and promotion.
ORGANISM(S): Homo sapiens
PROVIDER: GSE15162 | GEO | 2009/03/11
SECONDARY ACCESSION(S): PRJNA114935
REPOSITORIES: GEO
ACCESS DATA