Chemical Screen Identifies a Geroprotective Role of Quercetin in Premature and Physiological Aging
Ontology highlight
ABSTRACT: Aging increases the vulnerability to various diseases. The main goal of aging research is to find therapies that attenuate aging and alleviate aging-related diseases. In this study, we screened a nature product library for geroprotective compounds using Werner syndrome (WS) human mesenchymal stem cells (hMSCs), a premature aging model that we recently established. Ten candidate targets were identified and quercetin was further investigated due to its leading effects. Mechanistic studies revealed that in WS hMSCs, quercetin alleviated senescence via the enhancement of cell proliferation and the restoration and differentiation of heterochromatin architecture. RNA-seq analysis uncovered that quercetin and Vitamin C exerted geroprotective effects through different mechanisms. Besides WS hMSCs, quercetin also attenuated cellular senescence in Hutchinson-Gilford progeria syndrome (HGPS), physiological-aging and replicative-senescent hMSCs. More importantly, quercetin significantly improved the exercise endurance of old C57Bl/6 mice. Taken together, our study identifies quercetin as a geroprotective agent against premature and physiological aging, providing a novel therapeutic intervention for treating premature aging and promoting healthy aging.
Project description:Gallic acid (GA) is a natural phenolic compound with antioxidant, anti-inflammatory, and antineoplastic properties. Previous studies also revealed that GA supplementation inhibit the decline of rat embryonic and rejuvenate the immune function in D-gal-induced aging accelerated mice. However, the role of GA in regulating senescence of human premature aging stem cells is unknown. We have demonstrated that GA showed beneficial effects in alleviating human mesenchyme stem cell(hMSC) senescence: (1) GA alleviated senescence by promoting stem cell self-renewal ability and down-regulating the expression of aging markers, including P16 and P21, in Werner syndrome(WS) hMSCs; (2) High levels of reactive oxygen species in total cell as well as mitochondria were both rescued by GA treatment; (3) GA also maintained epigenetic features, enhanced cell stemness, and improved mitochondrial homeostasis in WS hMSCs. Our data provide substantial evidence supporting that GA is a promising candidate agent to
Project description:Gallic acid (GA) is a natural phenolic compound with antioxidant, anti-inflammatory, and antineoplastic properties. Previous studies also revealed that GA supplementation inhibit the decline of rat embryonic and rejuvenate the immune function in D-gal-induced aging accelerated mice. However, the role of GA in regulating senescence of human premature aging stem cells is unknown. We have demonstrated that GA showed beneficial effects in alleviating human mesenchymal stem cell (hMSC) senescence: (1) GA alleviated senescence by promoting stem cell self-renewal ability and down-regulating the expression of aging markers, including P16 and P21, in Werner syndrome (WS) hMSCs; (2) High levels of reactive oxygen species in total cell as well as mitochondria were both rescued by GA treatment; (3) GA also maintained epigenetic features, enhanced cell stemness, and improved mitochondrial homeostasis in WS hMSCs. Our data provide substantial evidence supporting that GA is a promising candidate agent to
Project description:Werner syndrome (WS) is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. We used microarrays to examine whether global gene expression profile of WS iPSCs is similar to that of normal iPSCs and human ESCs, as well as premature senescence phenotype is suppressed by reprogramming.
Project description:The premature aging disorder Werner Syndrome (WS) is characterized by early onset of aging phenotypes resembling natural aging. In most WS patients there are mutations in the DNA helicase WRN, an enzyme important in maintaining genome stability and telomere replication. Interestingly, its clinical manifestations reflect a severe degree of deterioration for connective tissue, whereas the central nervous system is less affected. We suggest that the varied vulnerability to aging is regulated by an unknown mechanism that protects specific lineages of stem cells from premature senescence. To address this problem, we reprogrammed patient skin fibroblasts to induced pluripotent stem cells (iPSC). The expression profile for the differentiated normal and WS fibroblasts and undifferentiated iPSC were compared. A distinct expression profile was found between normal and WS fibroblasts, however, few changes of gene expression were found in iPSC. Our findings suggest an erasure of aging phenotype associated with WS in reprogrammed iPSC. Human normal and WS skin fibroblasts were reprogrammed to induced pluripotent stem cells (iPSC). These samples, before and after reprogramming, were analyzed for the change of gene expression profile.
Project description:Metabolic dysfunction is a primary feature of Werner syndrome (WS), a human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. WS patients exhibit severe metabolic phenotypes, but the underlying mechanisms are not understood, and whether the metabolic deficit can be targeted for therapeutic intervention has not been determined. Here we report impaired mitophagy and depletion of NAD+, a fundamental ubiquitous molecule, in WS patient samples and WS invertebrate models. WRN regulates transcription of a key NAD+ biosynthetic enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1). NAD+ repletion restores NAD+ metabolic profiles and improves mitochondrial quality through DCT-1 and ULK-1-dependent mitophagy. At the organismal level, NAD+ repletion remarkably extends lifespan and delays accelerated aging, including stem cell dysfunction, in C. elegans and Drosophila melanogaster models of WS. Our findings suggest that accelerated aging in WRN syndrome is mediated by impaired mitochondrial function and mitophagy, and that bolstering cellular NAD+ levels counteracts WS phenotypes.
Project description:The premature aging disorder Werner Syndrome (WS) is characterized by early onset of aging phenotypes resembling natural aging. In most WS patients there are mutations in the DNA helicase WRN, an enzyme important in maintaining genome stability and telomere replication. Interestingly, its clinical manifestations reflect a severe degree of deterioration for connective tissue, whereas the central nervous system is less affected. We suggest that the varied vulnerability to aging is regulated by an unknown mechanism that protects specific lineages of stem cells from premature senescence. To address this problem, we reprogrammed patient skin fibroblasts to induced pluripotent stem cells (iPSC). The expression profile for the differentiated normal and WS fibroblasts and undifferentiated iPSC were compared. A distinct expression profile was found between normal and WS fibroblasts, however, few changes of gene expression were found in iPSC. Our findings suggest an erasure of aging phenotype associated with WS in reprogrammed iPSC.
Project description:Werner Syndrome (WS) is an autosomal recessive disorder characterized by premature aging due to mutations of the WRN gene. A classical sign in WS patients is short stature, but the underlying mechanisms are not well understood. Here we report that WRN is indispensable for chondrogenesis, which is the engine driving the elongation of bones and determines height.
Project description:Werner Syndrome (WS) is an autosomal recessive disorder characterized by premature aging due to mutations of the WRN gene. A classical sign in WS patients is short stature, but the underlying mechanisms are not well understood. Here we report that WRN is indispensable for chondrogenesis, which is the engine driving the elongation of bones and determines height.
Project description:DNA methylation gradiently changes with age and is likely to be involved in aging-related processes resulting in phenotype changes and increased susceptibility to certain diseases. The Hutchinson-Gilford Progeria Syndrome (HGP) and Werner Syndrome are two premature aging diseases showing features of common aging. Mutations in LMNA and WRN genes were associated to disease onset; however for a subset of patients the underlying causative mechanisms remain elusive. We aimed to evaluate the role of epigenetic alteration on premature aging diseases by performing genome-wide DNA methylation profiling of HGP and WS patients.