Project description:Using Foxp3.RFP Rag.GFP reporter mice, mature Tregs in the thymus were characterized by performing RNA sequencing on Rag.GFP– and Rag.GFP+ Tregs that were isolated from the thymus and Tregs isolated from the spleen
Project description:Although Foxp3+ regulatory T cells (Tregs) require interleukin-2 (IL-2) for their development, it has been unclear whether continuing IL-2 signals are needed to maintain lineage stability, survival, and suppressor function in mature Tregs. We generated mice in which CD25, the main ligand-binding subunit of the IL-2 receptor, can be inducibly deleted from Tregs after thymic development. In contrast to Treg development, we find that IL-2 is dispensable for maintaining lineage stability in mature Tregs. Although continuous IL-2 signaling is needed for long-term Treg survival, CD25-deleted Tregs may persist for several weeks in vivo using IL-7. We also observe defects in glycolytic metabolism and suppressor function following CD25 deletion. Thus, unlike developing Tregs in which the primary role of IL-2 is to initiate Foxp3 expression, mature Tregs require continuous IL-2 signaling to maintain survival and suppressor function, but not to maintain lineage stability.
Project description:Multiple proinflammatory conditions, including chemotherapy, radiotherapy, transplant rejection, and microbial infections, have been identified to induce involution of the thymus. However, the underlying cellular and molecular mechanisms of these inflammatory conditions inducing apoptosis of thymic epithelial cells (TECs), the main components of the thymus, remain largely unknown. In the circulation, mature dendritic cells (mDCs), the predominant initiator of innate and adaptive immune response, can migrate into the thymus. Herein, we demonstrated that mDCs were able to directly inhibit TECs proliferation and induce their apoptosis by activating the Jagged1/Notch3 signaling pathway. Intrathymic injection of either mDCs or recombinant mouse Jagged1-human Fc fusion protein (rmJagged1-hFc) into mice resulted in acute atrophy of the thymus. Furthermore, DAPT, a γ-secretase inhibitor, reversed the effects induced by mDC or rmJagged1-hFc. These findings suggest that acute or aging-related thymus degeneration can be induced either by mass migration of circulating mDCs in a short period of time or by a few but constantly homing mDCs.