Converting Escherichia coli to a synthetic methylotroph growing solely on methanol
Ontology highlight
ABSTRACT: Methanol, being electron-rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here, we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can utilize methanol as the sole carbon source efficiently. This synthetic methylotroph alleviated a heretofore uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS) mediated copy number variations (CNV) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable to natural methylotrophs in a wide-range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes, and expands the scope of biological C1 conversion.
ORGANISM(S): Escherichia coli
PROVIDER: GSE153477 | GEO | 2020/09/01
REPOSITORIES: GEO
ACCESS DATA