Transcriptomics

Dataset Information

0

Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and METTL14 KO bone marrow-derived macrophages(BMDM) Transcriptomes


ABSTRACT: Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived BMDM transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: BMDM mRNA profiles of 6-week-old wild-type (WT) and METTL14 knockout (M14−/−) mice with or without LPS treatment were generated by deep sequencing, in triplicate, using Illumina Hi-Seq 4000. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays Results: Using an optimized data analysis workflow, we mapped about 20 million sequence reads per sample to the mouse genome (build mm9) and identified 11,902 transcripts in WT and M14−/− BMDMs with BWA workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 20% of the transcripts showed differential expression between the WT and M14−/− BMDMs, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to BMDM function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions: Our study represents the first detailed analysis of BMDM transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.

ORGANISM(S): Mus musculus

PROVIDER: GSE153512 | GEO | 2020/12/09

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2014-07-03 | E-GEOD-59017 | biostudies-arrayexpress
2011-10-25 | E-GEOD-33141 | biostudies-arrayexpress
2014-07-03 | GSE59017 | GEO
2020-06-23 | GSE152949 | GEO
2021-07-27 | GSE151501 | GEO
2011-10-25 | GSE33141 | GEO
2021-02-19 | GSE167026 | GEO
2021-05-04 | GSE169348 | GEO
2019-10-15 | GSE133159 | GEO
2024-08-10 | GSE181758 | GEO