Project description:Summary: Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes (luminal A, luminal B, ERBB2-associated, basal-like and normal-like) with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 presumptive homozygous deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes. Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes. HEEBO oligonucleotide microarrays from the Stanford Functional Genomics Facility were used to perform gene expression profiling of 50 human breast epithelial cell lines, in comparison to a universal RNA reference. Expression data were analyzed by hierarchical clustering to identify subgroups, and gene set enrichment analysis to identify subgroup-specific gene pathways.
Project description:BACKGROUND:Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes-luminal A, luminal B, ERBB2-associated, basal-like and normal-like-with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. METHODS:Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. FINDINGS:Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem/progenitor-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 multi-copy deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes. CONCLUSIONS:Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, cancer stem cell biology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes.
Project description:This SuperSeries is composed of the following subset Series: GSE13914: Molecular profiling of breast cancer cell lines defines relevant tumor models (aCGH) GSE15361: Molecular profiling of breast cancer cell lines defines relevant tumor models (gene expression) Refer to individual Series
Project description:Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes - luminal A, luminal B, ERBB2-associated, basal-like and normal-like - with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 presumptive homozygous deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes. Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes.
Project description:Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes - luminal A, luminal B, ERBB2-associated, basal-like and normal-like - with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 presumptive homozygous deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes. Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes. cDNA microarrays from the Stanford Functional Genomics Facility were used to carry out array-based Comparative Genomic Hybridization (array CGH) analysis of 52 human breast epithelial cell lines, in comparison to normal female DNA. Three reference arrays of normal male vs. normal female DNA were also done. Map positions for arrayed cDNA clones were assigned using the NCBI genome assembly, accessed through the UCSC genome browser database (NCBI Build 36). The cghFLasso method was used to call DNA gains and losses.
Project description:Summary: Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes (luminal A, luminal B, ERBB2-associated, basal-like and normal-like) with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 presumptive homozygous deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes. Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes.
Project description:Summary: Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes (luminal A, luminal B, ERBB2-associated, basal-like and normal-like) with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 presumptive homozygous deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes. Overall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes. HEEBO oligonucleotide microarrays from the Stanford Functional Genomics Facility were used to perform gene expression profiling of 50 human breast epithelial cell lines, in comparison to a universal RNA reference. Expression data were analyzed by hierarchical clustering to identify subgroups, and gene set enrichment analysis to identify subgroup-specific gene pathways.
Project description:We performed quantitative proteomics on 60 human-derived breast cancer cell line models to a depth of ~13,000 proteins. The resulting high-throughput datasets were assessed for quality and reproducibility. We used the datasets to identify and characterize the subtypes of breast cancer and showed that they conform to known transcriptional subtypes, revealing that molecular subtypes are preserved even in under-sampled protein feature sets. All datasets are freely available as public resources on the LINCS portal. We anticipate that these datasets, either in isolation or in combination with complimentary measurements such as genomics, transcriptomics and phosphoproteomics, can be mined for the purpose of predicting drug response, informing cell line specific context in models of signalling pathways, and identifying markers of sensitivity or resistance to therapeutics.
Project description:High-grade serous ovarian carcinoma (HGSOC) is a highly aggressive and intractable neoplasm, mainly because of its rapid dissemination into the abdominal cavity, a process that is favored by tumor-associated peritoneal ascites. The precise molecular alterations involved in HGSOC onset and progression remain largely unknown due to the high biological and genetic heterogeneity of this tumor. We established a set of different tumor samples (termed the As11-set) derived from a single HGSOC patient, consisting of peritoneal ascites, primary tumor cells, ovarian cancer stem cells (OCSC) and serially propagated tumor xenografts. The As11-set was subjected to an integrated RNA-seq and DNA-seq analysis which unveiled molecular alterations that marked the different types of samples. Our profiling strategy yielded a panel of signatures relevant in HGSOC and in OCSC biology. When such signatures were used to interrogate the TCGA dataset from HGSOC patients, they exhibited prognostic and predictive power. The molecular alterations also identified potential vulnerabilities associated with OCSC, which were then tested functionally in stemness-related assays. As a proof of concept, we defined PI3K signaling as a novel druggable target in OCSC.
Project description:It is well documented that tumor cells undergo dramatic genetic and epigenetic changes during initial establishment as cell lines and in subsequent serial passaging, and that the resultant cell lines may have evolved significantly from the primary tumors from which they were derived. This has potential implications due to their widespread use in drug response experiments and studies of genomic function. One approach to optimizing the design of such cell line studies is to identify and use the cell lines that faithfully recapitulate critical features of primary tumors. To evaluate the epigenetic fidelity of breast cancer cell lines in the context of primary tumors, we performed methylation profiling of 55 well-characterized breast cancer cell lines on the Illumina HumanMethylation27 BeadChip platform, and compared them to publicly available methylation profiles of primary breast tumors. We found that the DNA methylation profiles of breast cancer cell lines largely retain the features that characterize primary tumors, although there are crucial differences as well. We describe these similarities and differences between primary tumors and breast cancer cell lines in detail, and develop a quantitative measure of similarity that is used to score each cell line with respect to how faithfully its methylation profile mirrors that of primary tumors.