Transcriptomics

Dataset Information

0

Oral primo-colonizing bacteria modulate inflammation and gene expression in bronchial epithelial cells


ABSTRACT: The microbiota of the mouth disperses into the lungs and both compartments share similar phyla. Considering the importance of the microbiota in the maturation of the immunity and physiology during the first days of life, we hypothesized that primo-colonizing bacteria of the oral cavity may induce immune responses in bronchial epithelial cells. Herein, we have isolated and characterized 57 strains of the buccal cavity of two human new-borns. These strains belong to Streptococcus, Staphylococcus, Enterococcus, Rothia and Pantoea genera; Streptococcus being the most represented. The strains were co-incubated with a bronchial epithelial cell line (BEAS-2B) and we established their impact on a panel of cytokines/chemokines and global changes in gene expression. The Staphylococcus strains, which appeared soon after birth, induced a high production of IL-8, suggesting they can trigger inflammation, whereas the Streptococcus strains were less associated with inflammation pathways. The genera Streptococcus, Enterococcus and Pantoea induced differential profiles of cytokine/chemokine/growth factor and set of genes associated with maturation of morphology. Altogether, our results demonstrate that the micro-organisms, primo-colonizing the oral cavity, impact immunity and morphology of the lung epithelial cells, with specific effects depending on the phylogeny of the strains.

ORGANISM(S): Homo sapiens

PROVIDER: GSE154245 | GEO | 2020/07/12

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2021-07-01 | GSE152969 | GEO
2021-07-05 | PXD016504 | Pride
2021-07-05 | PXD016913 | Pride
2007-11-11 | E-GEOD-6802 | biostudies-arrayexpress
2023-02-07 | GSE207081 | GEO
2021-07-01 | GSE152835 | GEO
2021-07-01 | GSE152834 | GEO
2021-07-01 | GSE152833 | GEO
2021-07-01 | GSE152832 | GEO
2021-07-01 | GSE152829 | GEO