The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts
Ontology highlight
ABSTRACT: ATP-dependent chromatin remodelers are commonly mutated in human cancer. Mammalian SWI/SNF complexes comprise three conserved multi-subunit chromatin remodelers (cBAF, ncBAF and PBAF) that share the BRG1 (also known as SMARCA4) subunit responsible for the main ATPase activity. BRG1 is the most frequently mutated Snf2-like ATPase in cancer. Here we have investigated the role of SWI/SNF in genome instability, a hallmark of cancer cells, given its role in transcription, DNA replication and DNA damage repair. We show that depletion of BRG1 increases R-loops and R-loop-dependent DNA breaks, as well as transcription-replication conflicts. BRG1 colocalizes with R-loops and replication fork blocks, as determined by FANCD2 foci, with BRG1 depletion being epistatic to FANCD2 silencing. Our study, extended to other components of SWI/SNF, uncovers a key role of the SWI/SNF complex, in particular cBAF, in helping resolve R-loop-mediated transcription-replication conflicts; thus, unveiling a novel mechanism by which chromatin remodeling protects genome integrity.
ORGANISM(S): Homo sapiens
PROVIDER: GSE154631 | GEO | 2021/05/10
REPOSITORIES: GEO
ACCESS DATA