Analysis of differences in gene expression due to small adaptive mutations in RNA polymerase B' subunit (rpoC)
Ontology highlight
ABSTRACT: Studies of the RNA polymerase-binding molecule ppGpp in bacteria and plants have shown that changes to the kinetics of the RNA polymerase can have dramatic biological effects in the short-term as a stress response. Here we describe the reprogramming of the kinetic parameters of the RNAP through mutations arising during laboratory adaptive evolution of Escherichia coli in minimal media. The mutations cause a 10- to 30-fold decrease in open complex stability at a ribosomal promoter and approximately a 10-fold decrease in transcriptional pausing in the his operon. The kinetic changes coincide with large scale transcriptional changes, including strong downregulation of motility, acid-resistance, fimbria, and curlin genes which are observed in site-directed mutants containing the RNA polymerase mutations as well as the evolved strains harboring the mutations. Site-directed mutants also grow 60% faster than the parent strain and convert the carbon-source 15% to 35% more efficiently to biomass. The results show that long-term adjustment of the kinetic parameters of RNA polymerase through mutation can be important for adaptation to a condition.
Project description:Studies of the RNA polymerase-binding molecule ppGpp in bacteria and plants have shown that changes to the kinetics of the RNA polymerase can have dramatic biological effects in the short-term as a stress response. Here we describe the reprogramming of the kinetic parameters of the RNAP through mutations arising during laboratory adaptive evolution of Escherichia coli in minimal media. The mutations cause a 10- to 30-fold decrease in open complex stability at a ribosomal promoter and approximately a 10-fold decrease in transcriptional pausing in the his operon. The kinetic changes coincide with large scale transcriptional changes, including strong downregulation of motility, acid-resistance, fimbria, and curlin genes which are observed in site-directed mutants containing the RNA polymerase mutations as well as the evolved strains harboring the mutations. Site-directed mutants also grow 60% faster than the parent strain and convert the carbon-source 15% to 35% more efficiently to biomass. The results show that long-term adjustment of the kinetic parameters of RNA polymerase through mutation can be important for adaptation to a condition. Mutations in the RNA polymerase beta prime subunit (rpoC) were discovered in E. coli following adaptation to continual logarithmic growth (OD <= 0.3) in glycerol M9 minimal media at 30 C. We used site-directed mutagenesis to make strains of E. coli isogenic to wild-type except for single adaptive rpoC mutations. We found they increase growth rate in this condition by 60%. In order to understand how the mutations affect gene expression in this condition, we extracted total mRNA from the strains, which had been growing in the adaptive evolution condition, at OD=0.3. There were three RNAP mutants and the wild-type (E. coli K-12 MG1655). Each strain had three flasks from which RNA was extracted (three biological replicates). There were no technical replicates. The mRNA was synthesized into cDNA, labeled, and hybridized to an Affymetrix E. coli 2.0 GeneChip.
Project description:Exploring molecular details of carbon utilization trade-offs in galactose-evolved yeast Adaptively evolved yeast mutants on galactose for around 400 generations showed diminished growth and carbon uptake rates on glucose. Genome-scale approaches were applied to characterize the molecular genetic basis of these trade-offs in carbon source utilization. Engineered mutants showing trade-offs in a specific carbon uptake rate between both carbons were used as controls. The transcriptional responses of the evolved mutants were almost identical during growth on both carbon sources. These carbon-independent conserved patterns were clearly observed in specific pathways and genes. Up-regulation of PGM2, a confirmed beneficial genetic change for improving galactose utilization was preserved on both carbons. In addition, HXK1, GLK1 and genes involved in reserve carbohydrate metabolism were up-regulated, while HXK2 was down-regulated. Genes that have a transcription factor binding site for Gis1p, Rph1p, Msn2/4p and Nrg1p were up-regulated. These results indicated changes in the metabolic pathways involved in metabolism of both carbons and in nutrient signaling pathway. The concentration profile of trehalose and glycogen supported these findings. Mutations in RAS2 and ERG5 genes were selected because of their beneficial and neutral effect on galactose utilization, respectively in our previous study. Site-directed mutants containing galactose-beneficial mutations in RAS2 only resulted in a significant decrease in glucose utilization. Integration of all these analyses clearly suggest an antagonistic pleiotropic trade-off in carbon source utilization caused by changes in regulatory region, and we hereby demonstrate how systems biology can be used to gain insight into evolutionary processes at the molecular level. Yeast galactose evolved mutants having improved galactose availability were grown on aerobic batch with glucose as carbon source
Project description:NLRC5 is a member of the NLR family of proteins. The observation that NLRC5 is found in the nucleus prompted us to perform a gene array to identify putative target genes of NLRC5. We generated Jurkat T cell lines that stably express either the wild-type or mutant forms of NLRC5 harboring mutations in the nucleotide binding domain (NBD): Walker A (deficient in nucleotide binding), Walker B (deficient in nucleotide hydrolysis), and the combined Walker AB, carrying both mutations. Site-directed mutagenesis was used to create the NLRC5 NBD mutants: Walker A (K234A), Walker B (E311Q), and Walker AB (both mutations).
Project description:Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that function in the nucleus. We previously found that erroneous rRNAs induce the generation of antisense ribosomal siRNAs (risiRNAs) which silence the expression of rRNAs via the nuclear RNAi defective (Nrde) pathway. To further understand the biological roles and mechanisms of this class of small regulatory RNAs, we conducted forward genetic screening to identify factors involved in risiRNA generation in Caenorhabditis elegans. We found that risiRNAs accumulated in the RNA exosome mutants. risiRNAs directed a NRDE-dependent silencing of pre-rRNAs in the nucleolus. In the presence of risiRNAs, NRDE-2 accumulated in the nucleolus and colocalized with RNA polymerase I. risiRNAs inhibited the transcription elongation of RNA polymerase I by decreasing RNAP I occupancy downstream of the RNAi-targeted site. Meanwhile, exosomes mislocalized from the nucleolus to nucleoplasm in suppressor of siRNA (susi) mutants, in which erroneous rRNAs accumulated. These results established a novel model of rRNA surveillance by combining ribonuclease-mediated RNA degradation with small RNA-directed nucleolar RNAi system.
Project description:Exploring molecular details of carbon utilization trade-offs in galactose-evolved yeast Adaptively evolved yeast mutants on galactose for around 400 generations showed diminished growth and carbon uptake rates on glucose. Genome-scale approaches were applied to characterize the molecular genetic basis of these trade-offs in carbon source utilization. Engineered mutants showing trade-offs in a specific carbon uptake rate between both carbons were used as controls. The transcriptional responses of the evolved mutants were almost identical during growth on both carbon sources. These carbon-independent conserved patterns were clearly observed in specific pathways and genes. Up-regulation of PGM2, a confirmed beneficial genetic change for improving galactose utilization was preserved on both carbons. In addition, HXK1, GLK1 and genes involved in reserve carbohydrate metabolism were up-regulated, while HXK2 was down-regulated. Genes that have a transcription factor binding site for Gis1p, Rph1p, Msn2/4p and Nrg1p were up-regulated. These results indicated changes in the metabolic pathways involved in metabolism of both carbons and in nutrient signaling pathway. The concentration profile of trehalose and glycogen supported these findings. Mutations in RAS2 and ERG5 genes were selected because of their beneficial and neutral effect on galactose utilization, respectively in our previous study. Site-directed mutants containing galactose-beneficial mutations in RAS2 only resulted in a significant decrease in glucose utilization. Integration of all these analyses clearly suggest an antagonistic pleiotropic trade-off in carbon source utilization caused by changes in regulatory region, and we hereby demonstrate how systems biology can be used to gain insight into evolutionary processes at the molecular level.
Project description:In fission yeast, the nuclear-localized Lsk1p-Lsc1p-Lsg1p cyclin dependent kinase complex is required for the reliable execution of cytokinesis and is also required for Ser-2 phosphorylation RNA pol II carboxy terminal domain. To address whether alterations in CTD phosphorylation might selectively alter expression of cytokinesis genes, expression profiling of site-directed CTD mutants was performed. Strains bearing the rpb1-12XCTD and rpb1-12XS2ACTD mutations were grown to mid-log phase in YES media and treated with 0.5uM LatA (or the solvent control, DMSO) for three hours at 30C. Three biological replicates were performed.
Project description:To better understand host/phage interactions and the genetic bases of phage resistance in a model system relevant to potential phage therapy, we isolated several spontaneous mutants of the USA300 S. aureus clinical isolate NRS384 that were resistant to phage K. Six of these had a single missense mutation in the host rpoC gene, which encodes the RNA polymerase beta prime subunit. To examine the hypothesis that the mutations in the host RNA polymerase affect the transcription of phage genes, we performed RNA-seq analysis on total RNA samples collected from NRS384 wild-type (WT) and rpoC G17D mutant cultures infected with phage K, at different time points after infection. Infection of the WT host led to a steady increase of phage transcription relative to the host. Our analysis allowed us to define different early, middle, and late phage genes based on their temporal expression patterns and group them into transcriptional units. Predicted promoter sequences defined by conserved -35, -10, and in some cases extended -10 elements were found upstream of early and middle genes. However, sequences upstream of late genes did not contain clear, complete, canonical promoter sequences, suggesting that factors in addition to host RNA polymerase are required for their regulated expression. Infection of the rpoC G17D mutant host led to a transcriptional pattern that was similar to the WT at early time points. However, beginning at 20 minutes after infection, transcription of late genes (such as phage structural genes and host lysis genes) was severely reduced. Our data indicate that the rpoCG17D mutation prevents the expression of phage late genes, resulting in a failed infection cycle for phage K. In addition to illuminating the global transcriptional landscape of phage K throughout the infection cycle, these studies can inform our investigations into the bases of phage K’s control of its transcriptional program as well as mechanisms of phage resistance.
Project description:Transcription termination was analyzed by anti RNA pol II ChIP-seq in isogenic human HEK293 cell lines that inducibly express a-amanitin resistant mutants of the RNA polymerase II large subunit with slow and fast elongation rates and in lines that inducbily over-express WT or an active site mutant of the RNA exonuclease "torpedo" Xrn2. Transcription termination zones were mapped by anti-pol II ChIP-seq under conditions where transcription elongation rate was increased or decreased by point mutations in the large subunit of the enzyme. Termination was also assayed under conditions where Xrn2 exonuclease activity was inhibited by over-expression of an active site mutant (D235A).
Project description:Various mutations in the rpoB gene, which encodes the RNA polymerase beta subunit, are associated with increased vancomycin (VAN) resistance in vancomycin-intermediate S. aureus (VISA) and hetero-VISA (hVISA) strains. We reported that rpoB mutations are also linked to the expression of the recently found slow VISA (sVISA) phenotype (Saito et al 2014 AAC). Because RpoC and RpoB are components of RNA polymerase, we examined the effect of rpoC(P440L) mutation on the expression of the sVISA phenotype in the Mu3fdh2*V6-5 strain (V6-5), which was derived from a previously reported hVISA strain with the VISA phenotype. V6-5 had an extremely prolonged doubling time (72.2 min) and high vncomycin MIC (16 mg/L). However, the phenotype of V6-5 was unstable, and the strain frequently reverted to hVISA with concomitant loss of slow growth rate, cell wall thickness, and reduced autolysis. Whole genome sequencing of phenotypic revertant strain V6-5-L1 and comparison with V6-5 revealed a second mutation F562L in rpoC. Introduction of the wild-type rpoC gene using multi-copy plasmid resolved the sVISA phenotype of V6-5, indicating that rpoC(P440L) mutation expressed the sVISA phenotype in hVISA. To investigate the mechanisms of resistance in the sVISA strain, we independently isolated additional 10 revertants to hVISA and VISA. In subsequent whole genome analysis, we identified compensatory mutations in the genes of three distinct functional categories; rpoC gene itself as regulatory mutations, peptidoglycan biosynthesis genes, and relQ which is involved in stringent response. It appears that rpoC(P440L) mutation causes sVISA phenotype by augmenting cell-wall peptidoglycan synthesis, and through the control of stringent response. 9 analysis using 60 mer-oligo microarray, 4 rpoC mutant, 2 relQ mutant, 2 mutations associated with the peptidoglycan, 1 wild-type strain