LncRNA expression data from BRCA drug-sensitive and drug-resistant cell lines
Ontology highlight
ABSTRACT: Worldwide, breast cancer (BRCA) is the most common malignant tumor in women. Adriamycin (ADR) is considered one of the most effective agents for the treatment of BRCA, but its efficacy as a curative agent is compromised by intrinsic resistance and the acquisition of multidrug resistance characteristics during chemotherapy. The underlying mechanisms resulting in ADR resistance in BRCA remain poorly understood. Long non-coding RNA (lncRNA) are abnormally expressed in many cancers and are highly involved in its pathogenesis, including drug resistance. In order to systematically study the role of lncRNA in the resistance of BRCA cells to ADR, we used lncRNA expression microarray to establish gene expression profiles of ADR resistant cell lines and ADR sensitive cell lines.
Project description:To explore the mechanisim and signaling pathway of hypomethylating agent decitabine in reversing P-glycoprotein(P-gp) induced multidrug resistance, we used adriamycin to treat drug sensitive human chronic myeloid leukemia K562 cells(KS) and successfully induced multidrug-resistant K562/ADR (KA) cells that higher expression of drug efflux pump P-gp. Gene expression profile was used to analysis the difference gene expression before and after treated with decitabine in both KS and KA cells.
Project description:The high throghput lncRNA and mRNA microarray data showed a total of 27,883 lncRNAs and 19,644 mRNAs expressed in gastric cancer cell line, SGC7901 and two multidrug-resistance sublines, SGC7901/ADR and SGC7901/VCR
Project description:To understand the underlying resistance mechanisms in response to imatinib (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for two months to generate derivative cells with mild, intermediate and severe resistance to the drugs as defined by their increasing resistance index (RI). PulseDIA-based quantitative proteomics was then employed to reveal the proteome changes in these resistant cells
Project description:Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually brought about by over-expression of P-glycoprotein (P-gp) which acts as a drug efflux pump. MiRNAome profiling using next-generation sequencing identified differentially expressed microRNAs (miRs) between parental K562 cells and MDR K562 cells (K562/ADM) induced by chronic adriamycin treatment. MiRNAome profiling in untreated K562 cells and K562 cells exposed to long-term adriamycin treatment
Project description:Background: Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells. Methods: Cancer stem cells were defined as CD44+/CD24– cells that could self-renew (ie, generate cells with the tumorigenic CD44+/CD24– phenotype), differentiate, invade, and form tumors in vivo. We used doxorubicin-selected MCF-7/ADR cells, weakly tumorigenic parental MCF-7 cells, and MCF-7/MDR, an MCF-7 subline with forced expression of ABCB1 protein. Cells were examined for cell surface markers and side-population fractions by microarray and flow cytometry, with in vitro invasion assays, and for ability to form mammospheres. Xenograft tumors were generated in mice to examine tumorigenicity (n = 52). The mRNA expression of multidrug resistance genes was examined in putative cancer stem cells and pathway analysis of statistically significantly differentially expressed genes was performed. All statistical tests were two-sided. Results: Pathway analysis showed that MCF-7/ADR cells express mRNAs from ABCB1 and other genes also found in breast cancer stem cells (eg, CD44, TGFB1, and SNAI1). MCF-7/ADR cells were highly invasive, formed mammospheres, and were tumorigenic in mice. In contrast to parental MCF-7 cells, more than 30% of MCF-7/ADR cells had a CD44+/CD24– phenotype, could self-renew, and differentiate (ie, produce CD44+/CD24– and CD44+/CD24+ cells), and overexpressed various multidrug resistance-linked genes (including ABCB1, CCNE1, and MMP9). MCF-7/ADR cells were statistically significantly more invasive in Matrigel than parental MCF-7 cells (MCF-7 cells = 0.82 cell per field and MCF-7/ADR = 7.51 cells per field, difference = 6.69 cells per field, 95% confidence interval = 4.82 to 8.55 cells per field, P<.001). No enrichment in the CD44+/CD24– or CD133+ population was detected in MCF-7/MDR. Conclusion: The cell population with cancer stem cell characteristics increased after prolonged continuous selection for doxorubicin resistance. PARALLEL study design with 4 samples Parental MCF-7 cell line versus Doxorubicin Resistant MCF-7 cell sublines Biological replicates: 2 parental controls, 2 drug resistant, independently grown and harvested. agent:Selection agent is multi-step doxorubicin selection: MCF7226ng, MCF7262ng biological replicate: MCF71, MCF72 biological replicate: MCF226ng, MCF7262ng
Project description:Microarray analysis of microRNAs differences between MCF-7 and MCF-7/ADR cells.Sample 1- Human breast cancer cell MCF-7,which exibits ER and PR expression, belongs to non-triple negative breast cancer cell with epithelial morphology and character.Sample 2-human breast cancer cell MCF-7/ADR,derived from MCF-7 and cultured with 1 ug/ml adriamycin for at least one year and pocesses adriamycin-resistance with mesenchymal morphology and character. We used microarrays to detail the global programme of microRNA expression between two distinct classes of breast cancer cells.
Project description:Background: Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells. Methods: Cancer stem cells were defined as CD44+/CD24– cells that could self-renew (ie, generate cells with the tumorigenic CD44+/CD24– phenotype), differentiate, invade, and form tumors in vivo. We used doxorubicin-selected MCF-7/ADR cells, weakly tumorigenic parental MCF-7 cells, and MCF-7/MDR, an MCF-7 subline with forced expression of ABCB1 protein. Cells were examined for cell surface markers and side-population fractions by microarray and flow cytometry, with in vitro invasion assays, and for ability to form mammospheres. Xenograft tumors were generated in mice to examine tumorigenicity (n = 52). The mRNA expression of multidrug resistance genes was examined in putative cancer stem cells and pathway analysis of statistically significantly differentially expressed genes was performed. All statistical tests were two-sided. Results: Pathway analysis showed that MCF-7/ADR cells express mRNAs from ABCB1 and other genes also found in breast cancer stem cells (eg, CD44, TGFB1, and SNAI1). MCF-7/ADR cells were highly invasive, formed mammospheres, and were tumorigenic in mice. In contrast to parental MCF-7 cells, more than 30% of MCF-7/ADR cells had a CD44+/CD24– phenotype, could self-renew, and differentiate (ie, produce CD44+/CD24– and CD44+/CD24+ cells), and overexpressed various multidrug resistance-linked genes (including ABCB1, CCNE1, and MMP9). MCF-7/ADR cells were statistically significantly more invasive in Matrigel than parental MCF-7 cells (MCF-7 cells = 0.82 cell per field and MCF-7/ADR = 7.51 cells per field, difference = 6.69 cells per field, 95% confidence interval = 4.82 to 8.55 cells per field, P<.001). No enrichment in the CD44+/CD24– or CD133+ population was detected in MCF-7/MDR. Conclusion: The cell population with cancer stem cell characteristics increased after prolonged continuous selection for doxorubicin resistance.
Project description:Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually brought about by over-expression of P-glycoprotein (P-gp) which acts as a drug efflux pump. MiRNAome profiling using next-generation sequencing identified differentially expressed microRNAs (miRs) between parental K562 cells and MDR K562 cells (K562/ADM) induced by chronic adriamycin treatment.
Project description:N6-Methyladenosine (m6A) is the most abundant post-transcriptional modification in eukaryotes, the imbalance of which is reported to be associated with various pathological processes, including drug resistance. In this study, we analyzed the methylated RNA immunoprecipitation combined with next-generation sequencing (MeRIP-seq) data of AML cell line HL60 and its adriamycin-resistant cell line HL60/ADR. We found a total of 40550 peaks, representing 15640 genes in HL60, and a total of 38834 peaks, representing 15285 genes in HL60/ADR. A total of 4437 differentially methylated m6A peaks within 3461 genes have been found between HL60 and HL60/ADR. Among them, 3587 differentially m6A peaks within 2790 genes were hyper-methylated, and 850 m6A peaks within 671 genes were hypo-methylated. KEGG pathway analysis showed that pathways were enriched in tumor and drug-resistant related signaling pathway. Results of MeRIP-seq showed that fold enrichment of global m6A peaks was higher in HL60/ADR compared to HL60. This study provides a framework for the application of comprehensive mRNA m6A profiling towards acute myeloid leukemia cell line (HL60) and its adriamycin-resistant acute myeloid leukemia cell line (HL60/ADR).