Project description:Worldwide, breast cancer (BRCA) is the most common malignant tumor in women. Adriamycin (ADR) is considered one of the most effective agents for the treatment of BRCA, but its efficacy as a curative agent is compromised by intrinsic resistance and the acquisition of multidrug resistance characteristics during chemotherapy. The underlying mechanisms resulting in ADR resistance in BRCA remain poorly understood. Long non-coding RNA (lncRNA) are abnormally expressed in many cancers and are highly involved in its pathogenesis, including drug resistance. In order to systematically study the role of lncRNA in the resistance of BRCA cells to ADR, we used lncRNA expression microarray to establish gene expression profiles of ADR resistant cell lines and ADR sensitive cell lines.
Project description:aCGH of human melanoma cell lines comparing parental (drug sensitve) vs isogenic drug resistant-derived subline Two condition experiment: two BRAF-V600E mutant cell lines (drug sensitive - parental baseline) vs two derived sublines after chronic exposure to the MEK inhibitor trametinib (drug resistant) are compared
Project description:To identify miRNAs involved in drug resistance of human breast cancer, a miRNA microarray was performed on 5 cases of drug resistant tissues and 5 cases of drug sensitive tissues.The expression levels of totally 2019 miRNAs in 5 pairs of matched, drug resistant and drug sensitive tissues were examined by microarray. There were 27 differentially expressed miRNAs between drug resistant and drug sensitive tissues were identified of which there were 11 significantly up-regulated while the other 16 were down-regulated in drug resistant tissues compared to drug sensitive tissues. It was found that miR-489 was one of the most downregulated miRNAs in drug resistant tissues.
Project description:Transcriptional profiling of mycobacterium tuberculosis clinical isolates in China comparing extensively drug-resistant tuberculosis with drug sensitive one.
Project description:Transcriptional profiling of mycobacterium tuberculosis clinical isolates in China comparing extensively drug-resistant tuberculosis with drug sensitive one. The same condition experiment. The samples were from the different drug-resistant strains. Only one replicate.
Project description:The goal of this study was to determine how an HIV quasispecies is maintained in the face of selection. We deep sequenced the HIV provirus from cell populations as well as single cells at different time points from in vitro evolution experiments and found that when a less fit and more fit infect the same cell, they share components (complmentation) and therefore allow the less fit to perpetuate. We reproduced a quasispecies to an HIV reverse transcriptase inhibitor. The drug resistant genotype never completely supplanted the drug sensitive genotype, which stabilized at about 20% of viral sequences. Single-cell sequencing showed that resistant genotype frequency plateaued when cells were co-infected with sensitive and resistant genotypes, suggesting a sharing of viral proteins in co-infected cells (complementation), masking genotypic differences. To test if complementation can confer phenotypic drug resistance, we co-transfected fluorescently labelled molecular clones of sensitive and resistant HIV and observed drug resistance in genotypically sensitive virus from co-transfected cells. Resistant virus preferentially co-infected cells with drug sensitive HIV, explaining initiation of co-infections. Modelling showed that a stable quasispecies could form at the experimental multiplicities of infection. Conclusions: Complementation can lead to a quasispecies in infection environments where multiple infections per cell are common
Project description:MCF7 breast cancer cell lines: drug-resistant (OHT and ICI) cell lines vs. drug-sensitive (wild type) cell lines. Assessment of association between gene expression and methylation.
Project description:Resistance to platinum compounds represents a major obstacle to the cure of ovarian carcinoma. The molecular profiling of drug-sensitive and drug-resistant cells may be helpful to clarify if altered expression of miRNAs can contribute to the drug-resistant phenotype. The expression pattern of miRNAs of three ovarian carcinoma cell lines was examined. The analysis revealed the modulation of several miRNAs in the two platinum-resistant cell lines as compared to parental platinum-sensitive cells. The integration of the information obtained through miRNA expression analysis may be useful to clarify the specific molecular alterations of factors and pathway favouring survival of tumor cells.