Project description:To obtain an overview of the transcriptome landscape in developing pig skeletal muscle, 81 high-quality transcriptome libraries that covered 27 developmental stages (3 biological replicates per stage) in pig skeletal muscle were produced by strand-specific rRNA-depleted total RNA sequencing (RNA-seq). We generated 8.59 billion paired-end reads (150 bp × 2) covering 1.24 Tb of sequence for RNA-seq.
Project description:To obtain an overview of the methylome landscape in the developing pig skeletal muscle, 81 high-quality whole-genome bisulfite sequencing(WGBS) libraries that covered 27 developmental stages (3 biological replicates per stage) from embryonic day 33 (E33) to postnatal day 180 (D180) were produced by whole-genome bisulfite sequencing.
Project description:Adenosine-to-inosine (A-to-I) RNA editing meditated by adenosine deaminases acting on RNA (ADARs) enzymes is a widespread post-transcriptional event in mammals. However, A-to-I editing in skeletal muscle remains poorly understood. By integrating strand-specific RNA-seq, whole genome bisulphite sequencing, and genome sequencing data, we comprehensively profiled the A-to-I editome in developing skeletal muscles across 27 prenatal and postnatal stages in pig, an important farm animal and biomedical model. We detected 198,892 A-to-I editing sites and found that they occurred more frequently at prenatal stages and showed low conservation among pig, human, and mouse. Both the editing level and frequency decreased during development and were positively correlated with ADAR enzymes expression. The hyper-edited genes were functionally related to the cell cycle and cell division. A co-editing module associated with myogenesis was identified. The developmentally differential editing sites were functionally enriched in genes associated with muscle development, their editing levels were highly correlated with expression of their host mRNAs, and they potentially influenced the gain/loss of miRNA binding sites. Finally, we developed a database to visualize the Sus scrofa RNA editome. Our study presents the first profile of the dynamic A-to-I editome in developing animal skeletal muscle and provides evidences that RNA editing is a vital regulator of myogenesis.
Project description:Skeletal muscle were collected from pigs treated in the control group, the Lys deficiency group and the Lys rescue group. Then, the samples were analyzed by LC-MSMS.
Project description:The spatio-temporal expression patterns of Circular RNA (circRNA) across organs and developmental stages are critical for its function and evolution analysis. However, they remain largely unclear in mammals. Here, we comprehensively analysed circRNAs in nine organs and three skeletal muscles of Guizhou miniature pig (S. scrofa), a widely used biomedical model animal. We identified 5,934 circRNAs and analysed their molecular properties, sequence conservation, spatio-temporal expression pattern, potential function, and interaction with miRNAs. S. scrofa circRNAs show modest sequence conservation with human and mouse circRNAs, are flanked by long introns, exhibit low abundance, and are expressed dynamically in a spatio-temporally specific manner. S. scrofa circRNAs show the greatest abundance and complexity in the testis. Notably, 31% of circRNAs harbour well-conserved canonical miRNA seed matches, suggesting that some circRNAs act as miRNAs sponges. We identified 149 circRNAs potentially associated with muscle growth and found that their host genes were significantly involved in muscle development, contraction, chromatin modification, cation homeostasis, and ATP hydrolysis-coupled proton transport; moreover, this set of genes was markedly enriched in genes involved in tight junctions and the calcium signalling pathway. Finally, we constructed the first public S. scrofa circRNA database, allowing researchers to query comprehensive annotation, expression, and regulatory networks of circRNAs.
Project description:Imprinted in placenta and liver (IPL) gene has been identified as an imprinted gene in the mouse and human. Its sequence and imprinting status, however, have not been determined in the domestic pigs. In the present study, a 259 base pair-specific sequence for IPL gene of the domestic pig was obtained and a novel SNP, a T/C transition, was identified in IPL exon 1. The C allele of this polymorphism was found to be the predominant allele in Landrace,Yorkshire, and Duroc. The frequency of CC genotype and C allele are different in Duroc as compared with Yorkshire (P = .038 and P = .005, resp.). Variable imprinting status of this gene was observed in different developmental stages. For example, it is imprinted in 1-day old newborns (expressed from the maternal allele), but imprinting was lost in 180-day-old adult (expressed from both parental alleles). Real-time PCR analysis showed the porcine IPL gene is expressed in all tested eight organ/tissues. The expression level was significantly higher in spleen, duodenum, lung, and bladder of 180-day-old Lantang adult compared to that in 1-day-old newborns Lantang pigs (P < .05). In conclusion, the imprinting of the porcine IPL gene is developmental stage and tissue specific.