Intestinal FGF15/19 physiologically represses hepatic lipogenesis in the late fed-state by activating SHP and DNMT3A
Ontology highlight
ABSTRACT: Hepatic lipogenesis is normally tightly regulated but is aberrantly elevated in obesity. Fibroblast Growth Factor-19 (FGF19, mouse FGF15) is a late fed-state gut hormone that decreases hepatic lipid levels by unclear mechanisms. We examined whether FGF15/19 and FGF15/19-activated Small Heterodimer Partner (SHP/NR0B2) have a role in transcriptional repression of lipogenesis. Comparative genomic analyses reveal that most of the SHP cistrome, including lipogenic genes repressed by FGF19, have overlapping CpG islands. FGF19 treatment or SHP overexpression in mice inhibits lipogenesis in a DNA methyltransferase-3a (DNMT3A)-dependent manner. FGF19-mediated activation of SHP via phosphorylation recruits DNMT3A to lipogenic genes, leading to DNA methylation and gene repression. In non-alcoholic fatty liver disease (NAFLD) patients and obese mice, occupancy of SHP and DNMT3A and DNA methylation at lipogenic genes are low, with elevated gene expression. These results demonstrate that FGF15/19 represses hepatic lipogenesis by activating SHP and DNMT3A physiologically, which is likely dysregulated in NAFLD.
ORGANISM(S): Mus musculus
PROVIDER: GSE158359 | GEO | 2020/09/23
REPOSITORIES: GEO
ACCESS DATA