Transcriptomics

Dataset Information

0

Chrom-Lasso:A lasso regression-based model to detect functional chromatin interactions using Hi-C data


ABSTRACT: We present Chrom-Lasso, an algorithm to identify chromatin interactions from Hi-C data, which performs better in identifying functional chromatin interactions that regulates gene expression when comparing with other methods. To futher assess its performance in investigating biological questions and its ability to deal with noisy data, we use an in vitro mouse CD8+ T cell activation model to generate Hi-C data and RNA-seq data at 4 status(Tn, Teff1, Teff2, Tex) during the process of activation, and we sort T cells at different status by gating criteria as follows: Tn(CD8+, CD44-, CD62L+, at day0), Teff1(CD8+, PD-1+, TIM-3-, at day2), Teff2(CD8+, PD-1+, TIM-3-, at day5), and Tex(CD8+, PD-1+, TIM-3+, at day5), for each status, we prepare 1 Hi-C library following the in situ Hi-C prorocol, and we also prepare 3 RNA-seq libraries from 3 times of parallel experiments. Since functional interactions influence the downstream gene expression level, so the relevance between interactions detected by Chrom-Lasso and gene expression would be powerful evidence proving the capability of Chrom-Lasso in detecting functional interactions.

ORGANISM(S): Mus musculus

PROVIDER: GSE158375 | GEO | 2020/11/30

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

| PRJNA665037 | ENA
2022-07-28 | GSE209965 | GEO
2023-05-31 | GSE211410 | GEO
2023-05-31 | GSE211409 | GEO
2023-12-06 | GSE230864 | GEO
2024-01-17 | GSE237613 | GEO
2024-01-17 | GSE237611 | GEO
2022-02-23 | GSE190169 | GEO
2019-09-26 | GSE137973 | GEO
2016-10-31 | GSE86796 | GEO