Project description:We developed a targeted chromosome conformation capture (4C) approach that uses unique molecular identifiers (UMI) to derive high complexity quantitative chromosome contact profiles with controlled signal to noise ratios. We demonstrate that the method improves the sensitivity and specificity for detection of long-range chromosomal interactions, and that it allows the design of interaction screens with predictable statistical power. UMI-4C robustly quantifies contact intensity changes between cell types and conditions, opening the way toward incorporation of long-range interactions in quantitative models of gene regulation. We constructed UMI-4C profiles of 13 different genomic loci (viewpoints) in five different cell lines, in order to study the 3D chromatin contact maps of these selected loci. The coordinates for these viewpoints are: G1p1 chrX:48646542; baitG1_3_5kb chrX:48641393; bait_50kb chrX:48595987; bait_165kb chrX:48476525; ANK1 chr8:41654693; hbb_3HS chr11:5221346; hbb_HBB chr11:5248714; hbb_HBBP1_G1 chr11:5266532; HBB_HBE chr11:5292159; HBB_HS2 chr11:5301345; HBB_HS3 chr11:5306690; HBB_HS5 chr11:5313539; HBB_HBD chr11:5256597
Project description:The HASTER promoter region is a cis-regulatory element that stabilizes the transcription of HNF1A, preventing silencing or overexpression. We have generated a mouse model where the promoter of Haster has been specifically deleted in liver (Haster loxP/loxP; AlbCre). In liver the prevailing consequence is upregulation of HNF1A. We performed UMI-4C experiments to assess how Haster inactivation remodel 3D chromatin interactions of the Hnf1a promoter using the Hnf1a promoter as viewpoint (V1, Hnf1a promoter upstream CTCF site viewpoint; V2, Hnf1a promoter VP).
Project description:We developed a targeted chromosome conformation capture (4C) approach that uses unique molecular identifiers (UMI) to derive high complexity quantitative chromosome contact profiles with controlled signal to noise ratios. We demonstrate that the method improves the sensitivity and specificity for detection of long-range chromosomal interactions, and that it allows the design of interaction screens with predictable statistical power. UMI-4C robustly quantifies contact intensity changes between cell types and conditions, opening the way toward incorporation of long-range interactions in quantitative models of gene regulation.
Project description:We developed a targeted chromosome conformation capture (4C) approach that uses unique molecular identifiers (UMI) to derive high complexity quantitative chromosome contact profiles with controlled signal to noise ratios. We demonstrate that the method improves the sensitivity and specificity for detection of long-range chromosomal interactions, and that it allows the design of interaction screens with predictable statistical power. UMI-4C robustly quantifies contact intensity changes between cell types and conditions, opening the way toward incorporation of long-range interactions in quantitative models of gene regulation.
Project description:Spermatogenesis involves the progressive reorganization of heterochromatin. However, the mechanisms that underlie the dynamic remodeling of heterochromatin remain unknown. Here, we identify SCML2, a germline-specific Polycomb protein, as a critical regulator of heterochromatin organization in spermatogenesis. We show that SCML2 accumulates on pericentromeric heterochromatin (PCH) in male germ cells, where it suppresses PRC1-mediated monoubiquitylation of histone H2A at Lysine 119 (H2AK119ub) and promotes deposition of PRC2-mediated H3K27me3 during meiosis. In postmeiotic spermatids, SCML2 is required for heterochromatin organization, and the loss of SCML2 leads to the formation of ectopic patches of facultative heterochromatin. Our data suggest that, in the absence of SCML2, the ectopic expression of somatic lamins drives this process. Furthermore, the centromere protein CENP-V is a specific marker of PCH in postmeiotic spermatids, and SCML2 is required for CENP-V localization on PCH. Given the essential functions of PRC1 and PRC2 for genome-wide gene expression in spermatogenesis, our data suggest that heterochromatin organization and spermatogenesis-specific gene expression are functionally linked. We propose that SCML2 coordinates the organization of heterochromatin and gene expression through the regulation of Polycomb complexes.