Project description:Hypothalamic tanycytes, radial glial cells that share many features with neuronal progenitors, can generate small numbers of neurons in the postnatal hypothalamus, but the identity of these neurons and the molecular mechanisms that control tanycyte-derived neurogenesis are unknown. In this study, we show that tanycyte-specific disruption of the NFI family of transcription factors (Nfia/b/x) robustly stimulates tanycyte proliferation and tanycyte-derived neurogenesis. Single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analysis reveals that NFI (nuclear factor I) factors repress Sonic hedgehog (Shh) and Wnt signaling in tanycytes and modulation of these pathways blocks proliferation and tanycyte-derived neurogenesis in Nfia/b/x-deficient mice. Nfia/b/x-deficient tanycytes give rise to multiple mediobasal hypothalamic neuronal subtypes that can mature, fire action potentials, receive synaptic inputs, and selectively respond to changes in internal states. These findings identify molecular mechanisms that control tanycyte-derived neurogenesis, which can potentially be targeted to selectively remodel the hypothalamic neural circuitry that controls homeostatic physiological processes.
Project description:Hypothalamic tanycytes, radial glial cells that share many features with neuronal progenitors, can generate small numbers of neurons in the postnatal hypothalamus, but the identity of these neurons and the molecular mechanisms that control tanycyte-derived neurogenesis are unknown. We report that tanycyte-specific disruption of the NFI family of transcription factors (Nfia/b/x) stimulates proliferation and tanycyte-derived neurogenesis. Single-cell RNA- and ATAC-Seq analysis reveals that NFI factors repress Shh and Wnt signaling in tanycytes, and small molecule inhibition of these pathways blocks proliferation and tanycyte-derived neurogenesis in Nfia/b/x-deficient mice. We show that Nfia/b/x-deficient tanycytes give rise to multiple mediobasal hypothalamic neuronal subtypes that can mature, integrate into hypothalamic circuitry, and selectively respond to changes in internal states. These findings identify molecular mechanisms controlling tanycyte-derived neurogenesis that can potentially be targeted to selectively remodel hypothalamic neural circuitry controlling homeostatic physiological processes.
Project description:Hypothalamic tanycytes, radial glial cells that share many features with neuronal progenitors, can generate small numbers of neurons in the postnatal hypothalamus, but the identity of these neurons and the molecular mechanisms that control tanycyte-derived neurogenesis are unknown. We report that tanycyte-specific disruption of the NFI family of transcription factors (Nfia/b/x) stimulates proliferation and tanycyte-derived neurogenesis. Single-cell RNA- and ATAC-Seq analysis reveals that NFI factors repress Shh and Wnt signaling in tanycytes, and small molecule inhibition of these pathways blocks proliferation and tanycyte-derived neurogenesis in Nfia/b/x-deficient mice. We show that Nfia/b/x-deficient tanycytes give rise to multiple mediobasal hypothalamic neuronal subtypes that can mature, integrate into hypothalamic circuitry, and selectively respond to changes in internal states. These findings identify molecular mechanisms controlling tanycyte-derived neurogenesis that can potentially be targeted to selectively remodel hypothalamic neural circuitry controlling homeostatic physiological processes.
Project description:Adult hypothalamic neurogenesis has recently been reported, but the cell of origin and the function of these newborn neurons are unknown. Using genetic fate mapping, we found that median eminence tanycytes generate newborn neurons. Blocking this neurogenesis altered the weight and metabolic activity of adult mice. These findings reveal a previously unreported neurogenic niche in the mammalian hypothalamus with important implications for metabolism.