Intermittent short-duration reoxygenation protects against simulated high altitude-induced pulmonary hypertension in rats
Ontology highlight
ABSTRACT: High-altitude pulmonary hypertension (HAPH) is a severe and progressive disease caused by chronic hypoxia and subsequent pulmonary vascular remodeling. No cure is currently available owing to an incomplete understanding about vascular remodeling. It is believed that hypoxia-induced diseases can be prevented by treating hypoxia. Thus, this study aimed to determine whether daily short-duration reoxygenation at sea level attenuates pulmonary hypertension under high-altitude hypoxia. To this end, a simulated 5,000-m hypoxia rat model was used to evaluate the effect of short-duration reoxygenation. Results show that intermittent, not continuous, short-duration reoxygenation effectively attenuates hypoxia-induced pulmonary hypertension. The mechanisms underlining the protective effects involved that intermittent, short-duration reoxygenation prevented functional and structural remodeling of pulmonary arteries and proliferation, migration, and phenotypic conversion of pulmonary artery smooth muscle cells under hypoxia. The specific genes or potential molecular pathways responsible for mediating the protective effects were also characterised by RNA sequencing.This study is novel in revealing a new potential method in preventing high-altitude pulmonary hypertension. It gives insights into the selection and optimisation of oxygen supply schemes in high-altitude areas.
ORGANISM(S): Rattus norvegicus
PROVIDER: GSE160926 | GEO | 2020/11/06
REPOSITORIES: GEO
ACCESS DATA