Haldane’s rule in the placenta: sex-biased misregulation of the Kcnq1 imprinting cluster in hybrid mice
Ontology highlight
ABSTRACT: Hybrid phenotypes that contribute to postzygotic reproductive isolation often exhibit pronounced asymmetry, both between reciprocal crosses and between the sexes in accordance with Haldane's rule. Inviability in mammalian hybrids is associated with parent-of-origin placental growth abnormalities for which misregulation of imprinted genes is the leading candidate mechanism. However, direct evidence for the involvement of imprinted genes in hybrid growth dysplasia is limited. We used transcriptome and reduced representation bisulfite sequencing to conduct the first genome-scale assessment of the contribution of imprinted genes to parent-of-origin placental growth dysplasia in the cross between the house mouse (Mus musculus domesticus) and the Algerian mouse (Mus spretus). Imprinted genes with transgressive expression and methylation were concentrated in the Kcnq1 cluster, which contains causal genes for prenatal growth abnormalities in mice and humans. Hypermethylation of the cluster’s imprinting control region, and consequent misexpression of the genes Phlda2 and Ascl2, is a strong candidate mechanism for transgressive placental undergrowth. Transgressive placental and gene regulatory phenotypes, including expression and methylation in the Kcnq1 cluster, were more extreme in hybrid males. While consistent with Haldane’s rule, male-biased defects are unexpected in rodent placenta because the X-chromosome is effectively hemizygous in both sexes. In search of an explanation we found evidence of leaky imprinted (paternal) X-chromosome inactivation in hybrid female placenta, an epigenetic disturbance that may buffer females from the effects of X-linked incompatibilities to which males are fully exposed. Sex differences in chromatin structure on the X and sex-biased maternal effects are non-mutually exclusive alternative explanations for adherence to Haldane’s rule in hybrid placenta. The results of this study contribute to understanding the genetic basis of hybrid inviability in mammals, and the role of imprinted genes in speciation.
Project description:In eutherian mammals, dosage compensation of X-linked genes is achieved by X chromosome inactivation. X inactivation is random in embryonic and adult tissues, but imprinted X inactivation (paternal X silencing) has been identified in the extraembryonic membranes of the mouse, rat, and cow. Few other species have been studied for this trait, and the data from studies of the human placenta have been discordant or inconclusive. Here, we quantify X inactivation using RNA sequencing of placental tissue from reciprocal hybrids of horse and donkey (mule and hinny). In placental tissue from the equid hybrids and the horse parent the allelic expression pattern was consistent with random X inactivation, and imprinted X inactivation can clearly be excluded. We characterized horse and donkey XIST gene, and demonstrated that XIST allelic expression in female hybrid placental and fetal tissues is negatively correlated with the other X-linked genes chromosome-wide, which is consistent with the XIST-mediated mechanism of X inactivation discovered previously in mice. As the most structurally and morphologically diverse organ in mammals, the placenta also appears to show diverse mechanisms for dosage compensation that may result in differences in conceptus development across species. Examine allelic expression from individual samples of invasive trophoblast tissue of the chorionic girdle from gestation day 33-34 conceptuses of 5 horses, 3 donkeys, 6 mules, and 1 hinny.
Project description:In eutherian mammals, dosage compensation of X-linked genes is achieved by X chromosome inactivation. X inactivation is random in embryonic and adult tissues, but imprinted X inactivation (paternal X silencing) has been identified in the extraembryonic membranes of the mouse, rat, and cow. Few other species have been studied for this trait, and the data from studies of the human placenta have been discordant or inconclusive. Here, we quantify X inactivation using RNA sequencing of placental tissue from reciprocal hybrids of horse and donkey (mule and hinny). In placental tissue from the equid hybrids and the horse parent the allelic expression pattern was consistent with random X inactivation, and imprinted X inactivation can clearly be excluded. We characterized horse and donkey XIST gene, and demonstrated that XIST allelic expression in female hybrid placental and fetal tissues is negatively correlated with the other X-linked genes chromosome-wide, which is consistent with the XIST-mediated mechanism of X inactivation discovered previously in mice. As the most structurally and morphologically diverse organ in mammals, the placenta also appears to show diverse mechanisms for dosage compensation that may result in differences in conceptus development across species.
Project description:The mammalian placenta is both the physical interface between mother and fetus, and the source of endocrine signals that target the maternal hypothalamus, priming females for parturition, lactation and motherhood. Despite the importance of this connection, the effects of altered placental signaling on the maternal brain are understudied. Here, we show that placental dysfunction alters gene expression in the maternal brain, with the potential to affect maternal behavior. Using a cross between the house mouse and the Algerian mouse in which hybrid placental development is abnormal, we sequenced late gestation placental and maternal medial preoptic area transcriptomes and quantified differential expression and placenta-maternal brain co-expression between normal and hybrid pregnancies. The expression of Fmn1, Drd3, Caln1 and Ctsr was significantly altered in the brains of females exposed to hybrid placentas. Most strikingly, expression patterns of placenta-specific gene families and Drd3 in the brains of house mouse females carrying hybrid litters matched those of female Algerian mice, the paternal species in the cross. Our results indicate that the paternally-derived placental genome can influence the expression of maternal-fetal communication genes, including placental hormones, suggesting an effect of the offspring's father on the mother’s brain.
Project description:The placenta acts as an interface between the mother and fetus, regulating nutrient transport and secreting hormones which impact maternal metabolism. Complications during pregnancy, such as placental endocrine malfunction, programme offspring to develop metabolic disease during adulthood, in part via changes in gene expression in critical metabolic organs, such as the liver, during fetal development. Placental endocrine malfunction was induced via the misexpression of two imprinted genes (Igf2 and H19) exclusively in the endocrine zone of the mouse placenta, to study the consequences this has on fetal hepatic gene expression.
Project description:Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic repression of imprinted genes is unclear. âImprinting control regionsâ (ICRs), however, are consistently marked by histone H3 K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET-domain protein G9a. We find that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression is unchanged at the domains analysed, in spite of a global loss of H3-K9 di-methylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is lost in the absence of G9, and this correlates with a loss of H3K9me2 and H3K9me3. These findings provide the first in vivo evidence for the involvement of a SET domain protein in imprinting and highlight the importance of histone lysine methylation rather than DNA methylation in the maintenance of imprinting in the trophoblast lineage. Experiment Overall Design: Number of samples: four (two biologically replicate G9a-/- pooled placentae samples, and two biologically replicate wildtype pooled placentae samples). The first G9a-/- and wildtype replicates were used to hybridize Affymetrix MOE430A and MOE430B arrays (four arrays total). The second replicates were used to hybridize Affymetrix Mouse430_2 arrays (two arrays total).
Project description:Given the possible critical importance of placental gene imprinting and random monoallelic expression on fetal and infant health, most of those genes must be identified, in order to understand the risks that the baby might meet during pregnancy and after birth. Therefore, the aim of the current study was to introduce a workflow and tools for analyzing imprinted and random monoallelic gene expression in human placenta, by applying whole-transcriptome (WT) RNA sequencing of placental tissue and genotyping of coding DNA variants in family trios. Ten family trios, each with a healthy spontaneous single-term pregnancy, were recruited. Total RNA was extracted for WT analysis, providing the full sequence information for the placental transcriptome. Parental and child blood DNA genotypes were analyzed by exome SNP genotyping microarrays, mapping the inheritance and estimating the abundance of parental expressed alleles. Imprinted genes showed consistent expression from either parental allele, as demonstrated by the SNP content of sequenced transcripts, while monoallelically expressed genes had random activity of parental alleles. We revealed 4 novel possible imprinted genes (LGALS8, LGALS14, PAPPA2 and SPTLC3) and confirmed the imprinting of 4 genes (AIM1, PEG10, RHOBTB3 and ZFAT-AS1) in human placenta. The major finding was the identification of 4 genes (ABP1, BCLAF1, IFI30 and ZFAT) with random allelic bias, expressing one of the parental alleles preferentially. The main functions of the imprinted and monoallelically expressed genes included: i) mediating cellular apoptosis and tissue development; ii) regulating inflammation and immune system; iii) facilitating metabolic processes; and iv) regulating cell cycle. Placentas from ten family trios were analysed using RNA-Seq.
Project description:Fetal health is dependent upon the epigenetic-based regulation of gene expression in placenta. Genomic imprinting is an epigenetic phenomenon common to placenta and refers to the monoallelic expression of a gene in a parental-specific manner. We aimed to detect novel imprinted genes in human placenta by applying whole transcriptome RNA-sequencing and genotyping of coding variants. Ten family trios with healthy spontaneous single term pregnancy were recruited. Parental and child DNA genotypes were analysed using exome SNP genotyping microarrays, revealing the inheritance of parental alleles. Total RNA was extracted from placental tissue for whole transcriptome analysis. The imprinted genes showed consistent expression from either parental allele as demonstrated by the SNP content of sequenced transcripts. We found seven novel imprinted genes (ABP1, BCLAF1, IFI30, LGALS8, LGALS14, PAPPA2 and SPTLC3) and confirmed five known imprinted genes (AIM1, PEG10, RHOBTB3, ZFAT and ZFAT-AS1). The main functions of the proteins encoded by the imprinted genes can be grouped as being involved in: i) cellular apoptosis and tissue development; ii) regulating inflammation and modulating the immune system; iii) facilitating metabolic processes and iv) regulating the cell cycle. Ten family trios (mother, father, child) were analysed using SNP genotyping. Raw data contains additional two samples that were not used.
Project description:Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic repression of imprinted genes is unclear. ‘Imprinting control regions’ (ICRs), however, are consistently marked by histone H3 K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET-domain protein G9a. We find that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression is unchanged at the domains analysed, in spite of a global loss of H3-K9 di-methylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is lost in the absence of G9, and this correlates with a loss of H3K9me2 and H3K9me3. These findings provide the first in vivo evidence for the involvement of a SET domain protein in imprinting and highlight the importance of histone lysine methylation rather than DNA methylation in the maintenance of imprinting in the trophoblast lineage. Keywords: genetic modification