Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain
Ontology highlight
ABSTRACT: Prenatal alcohol exposure is recognized to alter DNA methylation profiles of brain cells during development, and as being part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol during the initial embryonic stages, a window marked with dynamic DNA methylation reprogramming, and on how this may rework the brain developmental program. Using a pre-clinical in vivo mouse model, we show that pre-implantation alcohol exposure leads to adverse developmental outcomes that replicate clinical facets observed in children with FASD. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinted control regions, and abnormal re-establishment of de novo DNA methylation profiles in various biological pathways (e.g, neural/brain development). These findings support the contribution of alcohol-induced DNA methylation programming deviations during pre-implantation to the manifestations of neurodevelopmental phenotypes associated with FASD.
Project description:In this report we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA) expression, specifically the microRNA (miRNA) and small nucleolar RNA (snoRNA) subtypes. We found long lasting alterations in DNA methylation as a result of fetal alcohol exposure, specifically in the imprinted regions of the genome harboring ncRNAs and sequences interacting with regulatory proteins. ~20% of the altered ncRNAs mapped to three imprinted regions: Snrpn-Ube3a, Dlk1-Dio3, and Sfmbt2, which showed differential methylation and have been previously implicated in neurodevelopmental disorders. The findings of this report help to expand on the mechanisms behind the long lasting changes in the brain transcriptome of FASD individuals. Comparison of fetal alcohol exposed and matched control adult C57/BL6J mice brains with olfactory bulbs removed
Project description:Fetal alcohol exposure at any stage of pregnancy can lead to Fetal Alcohol Spectrum Disorder (FASD), a group of life-long conditions characterized by congenital malformations, as well as cognitive, behavioral, and emotional impairments. The teratogenic effects of alcohol have long been publicized; yet fetal alcohol exposure is one of the most common preventable causes of birth defects. Currently, alcohol abstinence during pregnancy is the best and only way to prevent FASD. However, alcohol consumption remains astoundingly prevalent among pregnant women; therefore, additional measures need to be made available to help protect the developing embryo before irreparable damage is done. Maternal nutritional interventions using methyl donors have been investigated as potential preventative measures to mitigate the adverse effects of fetal alcohol exposure. Here, we show that a single acute preimplantation (E2.5; 8-cell stage) fetal alcohol exposure in mice leads to long-term FASD-like morphological phenotypes (e.g., growth restriction, brain malformations, skeletal delays) in late-gestation embryos (E18.5) and demonstrate that supplementing the maternal diet with a combination of four methyl donor nutrients, folic acid, choline, betaine, and vitamin B12, prior to conception and throughout gestation effectively reduces the incidence and severity of alcohol-induced morphological defects without altering DNA methylation status and regulation of imprinting control regions. This study clearly supports that preimplantation embryos are vulnerable to the teratogenic effects of alcohol, emphasizing the dangers of maternal alcohol consumption during early gestation, and provides a potential proactive maternal nutritional intervention to minimize FASD progression, reinforcing the importance of adequate preconception and prenatal nutrition.
Project description:Background: Fetal alcohol spectrum disorder (FASD) is a developmental disorder that manifests through a range of cognitive, adaptive, physiological, and neurobiological deficits resulting from prenatal alcohol exposure. Although the North American prevalence is currently estimated at 2-5%, FASD has proven difficult to identify in the absence of the overt physical features characteristic of fetal alcohol syndrome. As interventions may have the greatest impact at an early age, accurate biomarkers are needed to identify children at risk for FASD. Building on our previous work identifying distinct DNA methylation patterns in children and adolescents with FASD, we have attempted to validate these associations in a different clinical cohort and to use our DNA methylation signature to develop a possible epigenetic predictor of FASD. Methods: Genome-wide DNA methylation patterns were analyzed using the Illumina HumanMethylation450 array in the buccal epithelial cells of a cohort of 48 individuals aged 3.5-18 (24 FASD cases, 24 controls). The DNA methylation predictor of FASD was built using a stochastic gradient boosting model on our previously published dataset FASD cases and controls (GSE80261). The predictor was tested on the current dataset and an independent dataset of 48 autism spectrum disorder cases and 48 controls (GSE50759). Results: We validated findings from our previous study that identified a DNA methylation signature of FASD, replicating the altered DNA methylation levels of 161/648 CpGs in this independent cohort, which may represent a robust signature of FASD in the epigenome. We also generated a predictive model of FASD using machine learning in a subset of our previously published cohort of 179 samples (83 FASD cases, 96 controls), which was tested in this novel cohort of 48 samples and resulted in a moderately accurate predictor of FASD status. Upon testing the algorithm in an independent cohort of individuals with autism spectrum disorder, we did not detect any bias towards autism, sex, age, or ethnicity. Conclusion: These findings further support the association of FASD with distinct DNA methylation patterns, while providing a possible entry point towards the development of epigenetic biomarkers of FASD.
Project description:Prenatal alcohol exposure is the leading preventable cause of behavioural and cognitive deficits, which may affect between 2-5% of children in North America. While the underlying mechanisms of alcohol’s effects on development remain relatively unknown, emerging evidence implicates epigenetic mechanisms in mediating the range of symptoms observed in children with Fetal Alcohol Spectrum Disorder (FASD). Thus, we investigated the effects of prenatal alcohol exposure on genome-wide DNA methylation in the NeuroDevNet FASD cohort, the largest cohort of human FASD samples to date. Genome-wide DNA methylation patterns of buccal epithelial cells were analyzed using the Illumina HumanMethylation450 array on a Canadian cohort of 206 children (110 FASD and 96 controls). Genotyping was performed in parallel using the Infinium HumanOmni2.5-Quad v1.0 BeadChip. After correcting for the effects of genetic background, 658 significantly differentially methylated sites between FASD cases and controls remained, with 41 displaying differences in beta greater than 5%. Furthermore, 203 differentially methylated regions containing 2 or more CpGs were also identified, overlapping with 167 different genes. The majority of differentially methylated genes were highly expressed in samples from the Allen Brain Atlas, which showed high correlations with buccal cell DNA methylation patterns. Furthermore, over-representation analysis of the up-methylated genes displayed a significant enrichment for neurodevelopmental processes and diseases, such as anxiety, epilepsy, and autism spectrum disorders. These findings suggest that prenatal alcohol exposure is associated with distinct DNA methylation patterns in children and adolescents, raising the possibility of an epigenetic biomarker of FASD.
Project description:In this report we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA) expression, specifically the microRNA (miRNA) and small nucleolar RNA (snoRNA) subtypes. We found long lasting alterations in DNA methylation as a result of fetal alcohol exposure, specifically in the imprinted regions of the genome harboring ncRNAs and sequences interacting with regulatory proteins. ~20% of the altered ncRNAs mapped to three imprinted regions: Snrpn-Ube3a, Dlk1-Dio3, and Sfmbt2, which showed differential methylation and have been previously implicated in neurodevelopmental disorders. The findings of this report help to expand on the mechanisms behind the long lasting changes in the brain transcriptome of FASD individuals.
Project description:Moderate alcohol consumption during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse moder of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear. We used two independent microarray experiments and focused on the genes identified by both to evaluate the genome-wide alterations to the adult brain transcriptome caused by prenatal ethanol exposure via moderate maternal drinking.
Project description:Moderate alcohol exposure during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse model of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear. We used a microarray experiment and focused on the genes identified by both to evaluate the genome-wide alterations to the adult brain transcriptome caused by prenatal ethanol exposure.
Project description:Fetal alcohol exposure can lead to developmental abnormalities, intellectual disability, and behavioral changes, collectively termed fetal alcohol spectrum disorder (FASD). In 2015, the CDC found that 1 in 10 pregnant women report alcohol use and more than 3 million women in the USA are at risk of exposing their developing baby to alcohol. Identifying genetic risk alleles for FASD is challenging, since time, dose and frequency of exposure are often unknown, and phenotypic manifestations of FASD are diverse and become evident long after exposure. Drosophila melanogaster presents an excellent model to study developmental effects of alcohol exposure, because virtually unlimited numbers of individuals of the same genotype can be reared rapidly and economically under well-controlled environmental conditions without regulatory restrictions. Furthermore, flies exposed to alcohol undergo physiological and behavioral changes that resemble human alcohol-related phenotypes. Flies reared on ethanol-supplemented medium show decreased viability, reduced sensitivity to ethanol, and disrupted sleep and activity patterns. To assess alcohol-modulated gene expression in the brains of flies reared on alcohol, we performed single cell RNA sequencing and resolved cell clusters with differentially expressed genes representing distinct neuronal and glial populations. We observed extensive sexual dimorphism. Two clusters associated with glial biomarkers showed greater differential gene expression in males, whereas mushroom body-derived cells exhibited a greater degree of differential gene expression in females. Results obtained from these studies provide a blueprint for translational studies on alcohol-induced effects on gene expression in the brain that may contribute to or result from FASD in human populations.
Project description:Fetal alcohol spectrum disorder (FASD) is a common developmental behavioral disorder caused by maternal drinking during pregnancy. Children born with FASD often face additional stress, particularly maternal separation that adds yet additional deficits. The mechanism associated with this phenomenon is not known. Using a mouse model, prenatal ethanol exposure and maternal separation stress have resulted in behavioral deficits and the combination of treatments results in more than additive effects. In addition, behavioral alterations are associated with changes in hippocampal gene expression that persist into adulthood. What initiates and maintains these changes remains to be established and forms the focus of this research. Specifically, MeDIP-Seq was used to assess how changes in promoter DNA methylation are affected by the combination of prenatal ethanol exposure and maternal separation stress with the potential to affect gene expression. The novel results show different sets of genes implicated by promoter DNA methylation affected by both treatments independently, and a relatively unique set of genes affected by the combination of treatments. Prenatal ethanol exposure leads to altered promoter DNA methylation at genes important for brain function and transcriptional regulation. Maternal separation stress leads to changes at genes important for histone methylation and immune response, and the combination of two treatments results in DNA methylation changes at genes important for neuronal migration and immune response. Our dual results on gene expression and DNA methylation from the same samples have allowed comparison of the two observations. There is minimal reciprocal overlap between changes in promoter DNA methylation and gene expression, although overlapping genes tend to be critical for brain development and function. These results suggest that epigenetic mechanisms beyond promoter DNA methylation must be involved in lasting gene expression alterations leading to behavioral deficits implicated in FASD.