Project description:We established a co-culture model using cells derived from hPSC and studied the transcriptomes on the lung cells and the co-cultures using scRNA-seq.
Project description:Genome wide DNA methylation profiling of hESC-derived mesothelium (MesoT), hESCs and hESC-derived splanchnic mesoderm (SplM) compared to primary human tissue samples. The Illumina Infinium HumanMethylation450 BeadChip kit was used to obtain DNA methylation profiles across approximately 450,000 methylation sites. Samples include 2 WA09 hESCs, 2 hESC-derived splanchnic mesoderm and 3 hESC-derived mesothelium replicates.
Project description:Human embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β-cells for diabetes treatment. A greater understanding of how β-cells form during embryonic development will improve current hESC differentiation protocols. As β-cells are formed from NEUROG3-expressing endocrine progenitors, this study focused on characterizing the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors. To do this, 7,223 E15.5 and 6,852 E18.5 single cells were isolated from Neurog3-Cre; Rosa26mT/mG embryos, allowing for enrichment of endocrine progenitors (yellow; tdTomato + EGFP) and endocrine cells (green; EGFP). From a NEUROG3-2A-eGFP CyT49 hESC reporter line (N5-5), 4,497 hESC-derived endocrine progenitor cells were sequenced. Differential expression analysis reveals enrichment of markers that are consistent with progenitor, endocrine, or novel cell-state populations. This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource (https://lynnlab.shinyapps.io/embryonic_pancreas/) for improving the formation of functional β-like cells from hESCs.
Project description:The self-renewal and differentiation potential of human embryonic stem cells (hESCs) suggests that hESCs could be used for regenerative medicine, especially for restoring neuronal functions in brain diseases. However, the functional properties of neurons derived from hESC are largely unknown. Moreover, since hESCs were derived under diverse conditions, the possibility arises that neurons derived from different hESC lines exhibit distinct properties, but this possibility remains unexplored. To address these issues, we developed a protocol that allows step-wise generation from hESCs of ~70-80% pure human neurons that form spontaneously active synaptic networks in culture. Comparison of neurons derived from the well-characterized HSF1 and HSF6 hESC lines revealed that HSF1- but not HSF6-derived neurons exhibit forebrain properties. Accordingly, HSF1-derived neurons initially form primarily GABAergic synaptic networks, whereas HSF6-derived neurons initially form glutamatergic networks. microRNA profiling revealed significant expression differences between the two hESC lines, suggesting that microRNAs may influence their distinct differentiation properties. These observations indicate that although both HSF1 and HSF6 hESCs differentiate into functional neurons, the two hESC lines exhibit distinct differentiation potentials, suggesting that they are pre-programmed. Information on hESC line-specific differentiation biases is crucial for neural stem cell therapy and establishment of novel disease models using hESCs. Keywords: Gene expression profiling
Project description:In this study, we characterised transcriptomes of hESC-derived transient anterior definitive endoderm (ADE) and expanding ventral foregut (VFG) culture by single-cell sequencing. We also examined the effect of BMP4 withdrawal and FGF2 stimulation in the VFG culture.