Project description:Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.
Project description:The perfusion of medium through blood vessels allows the preservation of donor organs and culture of bioengineered organs. However, tissue damage due to inadequate perfusion remains a problem. We evaluated whether intermittent external pressurization would improve the perfusion and viability of organs in culture. A bioreactor system was used to perfuse and culture rat small intestine and femoral muscle preparations. Intermittent positive external pressure (10 mmHg) was applied for 20 s at intervals of 20 s. Intermittent pressurization resulted in uniform perfusion of small intestine preparations and minimal tissue damage after 20 h of perfusion, whereas non-pressurized (control) preparations exhibited significantly worse perfusion of the upper surface than the lower surface and histologic evidence of tissue damage. Longer term studies were undertaken in luciferase-expressing rat femoral muscle preparations. Compared with non-pressurized controls, intermittent pressurization led to better perfusion throughout the 14-day experimental period, improved organ viability as indicated by a higher bioluminescence intensity after perfusion with luciferin, and reduced levels of tissue necrosis with better preservation of vascular structures and skeletal muscle nuclei (histologic analyses). Therefore, intermittent application of external positive pressure improved the perfusion of small intestine and skeletal muscle preparations and enhanced tissue viability when compared with controls. We anticipate that this innovative perfusion technique could be used to improve the preservation of donor organs and culture of bioengineered organs.