The landscape of H3K4me3 associate interactions between chromatin and RNAs in rice [ssDRIP-seq]
Ontology highlight
ABSTRACT: High-order rice chromatin contains numerous interactions among DNA, RNA and protein to regulate critical biological processes in various aspects of rice life. We developed an effective method for mapping histone-mediated chromatin associated RNA-DNA interactions, followed by paired-end-tag sequencing (ChRD-PET) in rice. With H3K4me3 ChRD-PET, H3 ChRD-PET and RNase H treated H3K4me3 ChRD-PET, we present a highly comprehensive map of RNA and chromatin interactions around promoters in rice MH63. Through integrating ChIA-PET (published data), ChRD-PET and ssDRIP-seq data analysis, we demonstrated the function of RNAs-chromatin interactions in different level. We also conducted ATAC-seq and integrative analysis uncovered the relationship of epigenetic modifications and ChRD-PET interactions. Our findings firstly revealed the map and features of RNAs-chromatin interactions in rice.
Project description:High-order rice chromatin contains numerous interactions among DNA, RNA and protein to regulate critical biological processes in various aspects of rice life. We developed an effective method for mapping histone-mediated chromatin associated RNA-DNA interactions, followed by paired-end-tag sequencing (ChRD-PET) in rice. With H3K4me3 ChRD-PET, H3 ChRD-PET and RNase H treated H3K4me3 ChRD-PET, we present a highly comprehensive map of RNA and chromatin interactions around promoters in rice MH63. Through integrating ChIA-PET (published data), ChRD-PET and ssDRIP-seq data analysis, we demonstrated the function of RNAs-chromatin interactions in different level. We also conducted ATAC-seq and integrative analysis uncovered the relationship of epigenetic modifications and ChRD-PET interactions. Our findings firstly revealed the map and features of RNAs-chromatin interactions in rice.
Project description:High-order rice chromatin contains numerous interactions among DNA, RNA and protein to regulate critical biological processes in various aspects of rice life. We developed an effective method for mapping histone-mediated chromatin associated RNA-DNA interactions, followed by paired-end-tag sequencing (ChRD-PET) in rice. With H3K4me3 ChRD-PET, H3 ChRD-PET and RNase H treated H3K4me3 ChRD-PET, we present a highly comprehensive map of RNA and chromatin interactions around promoters in rice MH63. Through integrating ChIA-PET (published data), ChRD-PET and ssDRIP-seq data analysis, we demonstrated the function of RNAs-chromatin interactions in different level. We also conducted ATAC-seq and integrative analysis uncovered the relationship of epigenetic modifications and ChRD-PET interactions. Our findings firstly revealed the map and features of RNAs-chromatin interactions in rice.
Project description:High-order rice chromatin contains numerous interactions among DNA, RNA and protein to regulate critical biological processes in various aspects of rice life. We developed an effective method for mapping histone-mediated chromatin associated RNA-DNA interactions, followed by paired-end-tag sequencing (ChRD-PET) in rice. With H3K4me3-mediated ChRD-PET, H3 ChRD-PET and RNase H treated H3K4me3-mediated ChRD-PET data, we present a highly comprehensive map of RNA and chromatin interactions in rice MH63. Through integrating ChIA-PET (published data) , ChRD-PET and ssDRIP-seq data analysis, we demonstrated the function of RNAs-chromatin interactions in different level. We also conducted ATAC-seq and integrative analysis uncovered the relationship of epigenetic modification and ChRD-PET interactions. Our findings revealed the map and features of RNAs-chromatin interactions in rice.
Project description:We generated a genome-wide interaction map of regulatory elements in human cells (K562, GM12878) using Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) experiments targeting six broadly distributed factors. For data usage terms and conditions, please refer to https://www.encodeproject.org/about/data-use-policy Chromatin interactions identified by ChIA-PET for 4 different histone modifications (H3K4me1, H3K4me2, H3K4me3, H3K27ac), RAD21 and RNAPII in the K562 cell line, two biological replicates each. Additionally, chromatin interactions were identified by ChIA-PET in the GM12878 cell line for RAD21.
Project description:We developed Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) for de novo detection of global chromatin interactions, and comprehensively mapped the chromatin interaction network bound by estrogen receptor α (ERα) in the human genome. We performed 454 and Illumina sequencing analyses. Keywords: Epigenetics Using 454, we examined 3 libraries: IHM001 (Estrogen Receptor ChIA-PET), IHM043 (Estrogen Receptor ChIP-PET) and IHM062 (IgG ChIA-PET) Using Illumina, we examined 4 libraries: IHM001 (Estrogen Receptor ChIA-PET replicate 1, Paired End Sequencing), IHH015 (Estrogen Receptor ChIA-PET replicate 2, Paired End Sequencing), H3K4me3 ChIP-Seq and RNA polymerase II ChIP-Seq
Project description:Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells. RNA polymerase II (RNAPII) bound chromatin interactions were extracted with Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing, in order to study the transcription regulations with RNAPII-associated long-range chromatin interactions. Five cell lines, namely MCF7 (ATCC# HTB-22), K562 (ATCC# CCL-243), HCT116 (ATCC# CCL-247), HeLa (ATCC# CCL-2.2), and NB4 (Roussel and Lanotte, 2001) (provided by Dr. Sherman Weissman, Yale University), were grown under standard culture conditions and harvested at log phase. Harvested cells were cross-linked using 1% formaldehyde followed by neutralization with 0.2M glycine. Chromatin was isolated and subjected to ChIA-PET protocol as described in Fullwood et al (Fullwood et al: An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 2009, 462(7269):58-64). The ChIA-PET sequence reads were processed and analyzed using ChIA-PET Tool (Li et al: ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol 2010, 11(2):R22).
Project description:Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing, we mapped long-range chromatin interactions associated with RNA polymerase II in three different mouse cell lines and uncovered widespread promoter-centered interactions. These interactions further aggregated into higher-order clusters, in which proximal and distant genes are engaged through enhancer-promoter interactions. Comparative analyses of different cell lines imply that cell specific enhancer interactions are dynamic among different cell specific transcription, and suggest significant enrichment of enhancer-promoter interactions for cell specific manner. Overall, our study provides novel insights into the three-dimensional basis of transcription activity in mouse cells. RNA polymerase II (RNAPII) guided chromatin interactions were discovered by Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing, in order to study genome-wise the enhancer-promoter interactions. Three cell lines, namely mouse embryonic stem cell E14, Neural stem cell NS5 and neuroshpere cells were grown under standard culture conditions and harvested at log phase. Harvested cells were cross-linked using 1% formaldehyde followed by neutralization with 0.2M glycine. Chromatin was isolated and subjected to ChIA-PET protocol as described in Fullwood et al, 2009. The ChIA-PET sequence reads were processed and analyzed using ChIA-PET Tool (Li et al, 2010)
Project description:To investigate genome-wide R-loops during meiosis exit and R-loop profiles changes with Nkapl knockout, we employed ssDRIP-seq (single-strand DNA ligation-based library preparation after DNA:RNA hybrid immunoprecipitation by S9.6 and sequencing) in wild-type and Nkapl-KO testes at P21.