XBP1s-Mediated Endoplasmic Reticulum Proteostasis Network Enhancement Can Selectively Improve Folding and Secretion of an Osteogenesis Imperfecta-Causing Collagen-I Variant
Ontology highlight
ABSTRACT: Osteogenesis imperfecta (OI) is most commonly caused by autosomal dominant mutations in genes encoding collagen type-I. Here, we test the hypothesis that modulation of the endoplasmic reticulum (ER) proteostasis network via the unfolded protein response (UPR) can improve the folding and secretion of the lethal osteogenesis imperfecta (OI)-causing G425S a1(I) variant. We show that specific induction of the UPR’s XBP1s transcriptional response enhances G425S a1(I) secretion up to ~300% of basal levels. Notably, the effect is selective – WT a1(I) secretion is unaltered by XBP1s. XBP1s pathway activation appears to post-translationally enhance the folding/assembly and secretion of G425S a1(I). Consistent with this notion, we find that the stable, triple-helical collagen-I secreted by XBP1s-activated G425S a1(I) patient fibroblasts includes a higher proportion of the mutant a1(I) polypeptide than the collagen-I secreted under basal ER proteostasis conditions.
ORGANISM(S): Homo sapiens
PROVIDER: GSE163812 | GEO | 2023/12/19
REPOSITORIES: GEO
ACCESS DATA