RNA-seq and CUT&Tag analysis of mouse cDC1 and cDC2 populations upon DC-SCRIPT depletion
Ontology highlight
ABSTRACT: The functional diversification of dendritic cells (DCs) is a key step in establishing protective immune responses. Despite the importance of this lineage diversity, its genetic basis is not fully understood. DC-SCRIPT (Zfp366) is a poorly known transcription factor expressed in conventional DCs (cDCs) and their committed bone marrow progenitors but not in plasmacytoid DCs (pDCs). We show that mice lacking DC-SCRIPT displayed substantially impaired development of IRF8-dependent conventional DC1 (cDC1), while cDC2 differentiated normally. The residual DC-SCRIPT-deficient cDC1s had impaired CD8+ T-cell cross-priming, which could be in part explained by the direct control of DC-SCRIPT on IL-12p40 production. Genome-wide mapping of DC-SCRIPT binding and gene expression analyses revealed a key role for DC-SCRIPT in maintaining cDC1 identity via the direct regulation of cDC1 signature genes, including Irf8. Our study reveals DC-SCRIPT to be a critical component of the gene regulatory program shaping the functional attributes of cDC1s. This SuperSeries is composed of the SubSeries listed below.
ORGANISM(S): Mus musculus
PROVIDER: GSE165361 | GEO | 2021/02/24
REPOSITORIES: GEO
ACCESS DATA