Project description:Duchenne muscular dystrophy (DMD) related cardiomyopathy is the leading cause of early mortality in DMD patients. There is an urgent need to gain a better understanding of the disease molecular pathogenesis and develop effective therapies to prevent the onset of heart failure. In the present study, we used DMD human induced pluripotent stem cells (DMD-hiPSCs) derived cardiomyocytes (CMs) as a platform to explore the active compounds in commonly used Chinese herbal medicine (CHM) herbs. Single CHM herb (DaH, ZK, and CQZ) reduced cell beating rate, decreased cellular ROS accumulation, and improved structure of DMD hiPSC-CMs. Cross-comparison of transcriptomic profiling data and active compound library identified nine active chemicals targeting ROS neutralizing Catalase (CAT) and structural protein vascular cell adhesion molecule 1 (VCAM1). Treatment with Quecetin, Kaempferol, and Vitamin C, targeting CAT, conferred ROS protection and improved contraction; treatment with Hesperidin and Allicin, targeting VCAM1, induced structure enhancement via induction of focal adhesion. Lastly, overexpression of CAT or VCAM1 in DMD hiPSC-CMs reconstituted efficacious effects and conferred increase in cardiomyocyte function. Together, our results provide a new insight in treating DMD cardiomyopathy via targeting of CAT and VCAM1, and serves as an example of translating Bed to Bench back to Bed using a muti-omics approach.
Project description:Absence of the dystrophin gene in Duchenne muscular dystrophy (DMD) results in the degeneration of skeletal and cardiac muscles. Owing to advances in respiratory medicine, cardiomyopathy has become a significant aspect of the disease. While CRISPR/Cas9 genome editing technology holds great potential as a novel therapeutic avenue for DMD, little is known about the efficacy of correction of DMD using the CRISPR/Cas9 system in mitigating the cardiomyopathy phenotype in DMD. To define the effects of CRISPR/Cas9 genome editing on structural, functional and transcriptional dysregulation in DMD-associated cardiomyopathy. We generated induced pluripotent stem cells (iPSCs) from a patient with a deletion of exon 44 of the DMD gene (ΔEx44) and his healthy brother. Here, we targeted exon 45 of the DMD gene by CRISPR/Cas9 genome editing to generate corrected DMD (cDMD) iPSC lines, wherein the DMD open reading frame was restored via reframing (RF) or exon skipping (ES). While DMD cardiomyocytes (CMs) demonstrated morphologic, structural and functional deficits compared to control CMs, CMs from both cDMD lines were similar to control CMs. Bulk RNA-sequencing of DMD CMs showed transcriptional dysregulation consistent with dilated cardiomyopathy, which was mitigated in cDMD CMs. We then corrected DMD CMs by adenoviral delivery of Cas9/gRNA and showed that postnatal correction of DMD CMs reduces their arrhythmogenic potential. Single-nucleus RNA-sequencing of hearts showed reduced transcriptional dysregulation in CMs and fibroblasts in corrected mice compared with DMD mice, consistent with reduced histopathologic changes.We show that CRISPR/Cas9-mediated correction of DMD ΔEx44 mitigates structural, functional and transcriptional dysregulation consistent with dilated cardiomyopathy irrespective of how the protein reading frame is restored. We show that these effects extend to postnatal editing in iPSC-CMs and mice. These findings provide key insights into the utility of genome editing as a novel therapeutic for DMD-associated cardiomyopathy.
Project description:Since RBPs play important roles in the cell, it’s particularly important to find new RBPs. We performed iRIP-seq and CLIP-seq to verify two proteins, CLIP1 and DMD, predicted by RBPPred whether are RBPs or not. The experimental results confirm that these two proteins have RNA-binding activity. We identified significantly enriched binding motifs UGGGGAGG, CUUCCG and CCCGU for CLIP1 (iRIP-seq), DMD (iRIP-seq) and DMD (CLIP-seq), respectively. The computational KEGG and GO analysis show that the CLIP1 and DMD share some biological processes and functions. Besides, we found that the SNPs between DMD and its RNA partners may associate with Becker muscular dystrophy, Duchenne muscular dystrophy, Dilated cardiomyopathy 3B and Cardiovascular phenotype. Among the thirteen cancers data, CLIP1 and another 300 genes always co-occur, and 123 of these 300 genes interact with CLIP1. These cancers may be associated with the mutations in both CLIP1 and the genes it interacts with.
Project description:The Dystrophin gene (DMD) is the largest gene in the human genome, mapping on Xp21, spanning 2.2Mb and accounting for approximately 1% of the entire human genome. Mutations in this gene cause Duchenne and Becker muscular dystrophy, X-linked dilated cardiomyopathy, and other milder muscle phenotypes. Beside the remarkable number of reports describing dystrophin gene expression and the pathogenic consequences of the gene mutations in dystrophinopathies, the full scenario of the DMD transcription dynamics remains however, poorly understood. Considering that the full transcription of the DMD gene requires about 16 hours, we have investigated the activity of RNA Polymerase II along the entire DMD locus within the context of specific chromatin modifications using a variety of chromatin-based techniques. Our results unveil a surprisingly powerful processivity of the RNA pol II along the entire 2.2 Mb of the DMD locus with just one site of pausing around intron 52. More importantly, epigenetic marks highlighted the existence of four novel cis-DNA elements, two of which, located within intron 34 and exon 45, appear to govern the architecture of the DMD chromatin with implications on the expression levels of the muscle dystrophin mRNA. Overall, our findings provide a global view on how the entire DMD locus is dynamically transcribed by the RNA pol II and shed light on the mechanisms involved in dystrophin gene expression control, which can positively impact on the optimization of the novel ongoing therapeutic strategies for dystrophinopathies.
Project description:DMD is a genetic disease, which leads to muscle weakness and cardiomyopathy. The latter remains incurable, being the main cause of death in DMD, therefore new therapeutic strategies are being sought to provide effective treatment. One of them considers upregulation of utrophin, a protein structurally and functionally homologous to dystrophin. In this study proteomic analysis of dystrophin-deficient and both dystrophin- and utrophin-deficient hiPSC-CM indicated on considerable differences in terms of contraction-related mechanisms. We thus investigated the role of utrophin in the maintenance of electrophysiological properties of DMD hiPSC-CM using the cells with additional utrophin deficiency and with utrophin upregulation. Obtained results indicated on disturbance of calcium handling in DMD hiPSC-CM, even more pronounced in DMD/UTRN KO hiPSC-CM and increased values of AHP in DMD hiPSC-CM. Utrophin upregulation improved both calcium oscillations and AHP values. Our findings highlight utrophin as important in the maintenance of the electrophysiological properties of DMD hiPSC-CM.
Project description:Duchenne muscular dystrophy is an X-linked monogenic disease caused by mutations in the dystrophin gene (DMD) and characterized by progressive muscle weakness leading to loss of ambulation and significantly decreased life expectancy. Since the current standard of care for Duchenne muscular dystrophy is to merely treat symptoms, there is a dire need for novel treatment modalities that can correct the underlying genetic mutations. While several gene replacement therapies are being explored in clinical trials, one emerging approach that can directly correct mutations in genomic DNA is base editing. We have recently developed CRISPR-SKIP, a base editing strategy to induce permanent exon skipping by introducing C>T or A>G mutations at splice acceptors in genomic DNA, which can be utilized therapeutically to recover dystrophin expression when a genomic deletion leads to an out-of-frame DMD transcript. We now demonstrate that CRISPR-SKIP can be adapted to correct some forms of Duchenne muscular dystrophy by disrupting the splice acceptor in human DMD exon 45 with high efficiency, which enables open reading frame recovery and restoration of dystrophin expression. We also demonstrate that AAV-delivered split-intein base editors edit the splice acceptor of DMD exon 45 in cultured human cells and in vivo, highlighting the therapeutic potential of this strategy.
Project description:Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the dystrophin (DMD) gene, leading to the complete absence of DMD and progressive degeneration of skeletal and heart muscles. Expression of an internally shortened dystrophin in DMD subjects (DMDΔ52) can be achieved by skipping DMD exon 51 to reframe the transcript. To predict the best possible outcome of this therapeutic strategy, we generated transgenic pigs lacking DMD exon 51 and 52, additionally representing a new model for Becker muscular dystrophy (BMD). To inspect the proteome alterations caused by the different dystrophin mutations in an unbiased and comprehensive manner, we performed a label-free liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) of myocardial and skeletal muscle samples from wild-type (WT), DMDΔ52 and DMDΔ51-52 pigs.