Project description:Simultaneous profiling of multiomic modalities within a single cell is a grand challenge for single-cell biology. While there have been impressive technical innovations demonstrating feasibility-for example, generating paired measurements of single-cell transcriptome (single-cell RNA sequencing [scRNA-seq]) and chromatin accessibility (single-cell assay for transposase-accessible chromatin using sequencing [scATAC-seq])-widespread application of joint profiling is challenging due to its experimental complexity, noise, and cost. Here, we introduce BABEL, a deep learning method that translates between the transcriptome and chromatin profiles of a single cell. Leveraging an interoperable neural network model, BABEL can predict single-cell expression directly from a cell's scATAC-seq and vice versa after training on relevant data. This makes it possible to computationally synthesize paired multiomic measurements when only one modality is experimentally available. Across several paired single-cell ATAC and gene expression datasets in human and mouse, we validate that BABEL accurately translates between these modalities for individual cells. BABEL also generalizes well to cell types within new biological contexts not seen during training. Starting from scATAC-seq of patient-derived basal cell carcinoma (BCC), BABEL generated single-cell expression that enabled fine-grained classification of complex cell states, despite having never seen BCC data. These predictions are comparable to analyses of experimental BCC scRNA-seq data for diverse cell types related to BABEL's training data. We further show that BABEL can incorporate additional single-cell data modalities, such as protein epitope profiling, thus enabling translation across chromatin, RNA, and protein. BABEL offers a powerful approach for data exploration and hypothesis generation.
Project description:We present deep-learning-enabled super-resolution across different fluorescence microscopy modalities. This data-driven approach does not require numerical modeling of the imaging process or the estimation of a point-spread-function, and is based on training a generative adversarial network (GAN) to transform diffraction-limited input images into super-resolved ones. Using this framework, we improve the resolution of wide-field images acquired with low-numerical-aperture objectives, matching the resolution that is acquired using high-numerical-aperture objectives. We also demonstrate cross-modality super-resolution, transforming confocal microscopy images to match the resolution acquired with a stimulated emission depletion (STED) microscope. We further demonstrate that total internal reflection fluorescence (TIRF) microscopy images of subcellular structures within cells and tissues can be transformed to match the results obtained with a TIRF-based structured illumination microscope. The deep network rapidly outputs these super-resolved images, without any iterations or parameter search, and could serve to democratize super-resolution imaging.
Project description:HIV infection remains incurable due to the long-term persistence of latently infected cells, capable of refueling viremia upon antiretroviral therapy interruption. Shock-and-kill strategies aim to purge this latent reservoir by inducing the expression of viral genes, making infected cells visible for cleanup by the immune system. Here, we present a Tat mRNA formulation that, when combined with panobinostat, enables latency reversal at levels >3-fold higher than those reached with the most potent mitogens. We demonstrate that this mRNA formulation does not alter the transcriptome or phenotype of CD4 T cells, enabling the ex vivo assessment of infected cells upon latency reversal in a near-native state. Taking advantage of this characteristic, we show transcriptomic and proteomic differences between infected cells upon latency reversal and non-infected cells, including the upregulation of the cytotoxic protein granzyme A and a novel long non-coding RNA. Overall, we demonstrate that a Tat mRNA formulation enables potent reactivation of latent HIV, presenting a valuable research tool for studying the inducible HIV reservoir, as well as paving the way to a more effective shock-and-kill functional cure.
Project description:This study utilizes multi-omic biological data to perform deep immunophenotyping on the major immune cell classes in COVID-19 patients. 10X Genomics Chromium Single Cell Kits were used with Biolegend TotalSeq-C human antibodies to gather single-cell transcriptomic, surface protein, and TCR/BCR sequence information from 254 COVID-19 blood draws (a draw near diagnosis (-BL) and a draw a few days later (-AC)) and 16 healthy donors.
Project description:Rapid growth in size and complexity of biological data sets has led to the 'Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in Escherichia coli: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology.
Project description:We used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Two condition (flagellin and LPS) time course exposure of RAW 264.7 cell line at 1, 2, 4, and 24 hours. Two replicates for each condition and time point. All conditions compared to a pool of untreated cells at a 0 hour time point.