The INO80 chromatin remodeling complex promotes thermomorphogenesis by connecting H2A.Z eviction and active transcription in Arabidopsis[ChIP-seq]
Ontology highlight
ABSTRACT: Global warming imposes a major threat to plant growth and crop production. In some plants including Arabidopsis thaliana, elevated temperatures induce a series of morphological and developmental adjustments, termed thermomorphogenesis to facilitate plant cooling under high-temperature conditions. Plant thermal response is suppressed by histone variant H2A.Z. At warm temperatures, H2A.Z is evicted from nucleosomes at thermo-responsive genes, resulting in their activation. However, the mechanisms that regulate H2A.Z eviction and subsequent transcription activation are largely unknown. Here, we show that the ino80 chromatin-remodeling complex (ino80-C) promotes thermomorphogenesis and activates the expression of thermo-responsive and auxin-related genes. ino80-C associates with PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a potent regulator in thermomorphogenesis, and mediates temperature-induced H2A.Z eviction at PIF4 targets. Moreover, ino80-C directly interacts with COMPASS-like and transcription elongation factors to promote active histone modification Histone H3 lysine 4 trimethylation (H3K4me3) and RNA Polymerase II (RNA Pol II) elongation, leading to the thermal induction of transcription. Notably, transcription elongation factors are required for the eviction of H2A.Z at PIF4 targets, suggesting the cooperation of ino80-C and transcription elongation in H2A.Z removal. Our results demonstrate that the (PIF4)-(ino80-C)-(COMPASS-like)-(transcription elongator) module controls plant thermal response, and establish a link between H2A.Z eviction and active transcription.
ORGANISM(S): Arabidopsis thaliana
PROVIDER: GSE168119 | GEO | 2021/11/27
REPOSITORIES: GEO
ACCESS DATA