Analysis of Transcriptomics and Rhizosphere Fungal Diversity in Different Tissues of Blueberry under Cadmium Stress
Ontology highlight
ABSTRACT: In this study, blueberry transcriptomics and rhizosphere fungal diversity were analyzed by simulated potting method to treat blueberries with Cd stress, and the content of Fe, Mn, Cu, Zn and Cd in each tissue, soil and DGT of blueberries were determined. , Combined with transcriptomics for correlation analysis. A total of 84374 annotated genes were obtained in blueberry roots, stems, leaves and fruits, of which 3370 DEGs were found, and DEGs in the stem accounted for the highest proportion, totaling 2521. The annotation results show that these DEGs are mainly concentrated in a series of metabolic pathways related to signal transduction, defense and pathogenic response. Blueberries transfer excess Cd from the root to the stem for storage. The stem contains the highest Cd content, which is consistent with the transcriptomics analysis results, while the fruit contains the lowest Cd content. Correlation analysis between heavy metal content and transcriptomics results in each tissue was carried out, and a series of genes related to Cd regulation were screened. The blueberry root system relies on mycorrhiza to absorb nutrients in the soil. The intervention of Cd has severely affected the microflora structure of the blueberry rhizosphere soil. Coniochaetaceae, which is extremely tolerant, has gradually become the dominant population.
Project description:Arsenic (As) bioavailability in the rice rhizosphere is influenced by many microbial interactions, particularly by metal-transforming functional groups at the root-soil interface. This study was conducted to examine As-transforming microbes and As-speciation in the rice rhizosphere compartments, in response to two different water management practices (continuous and intermittently flooded), established on fields with high to low soil-As concentration. Microbial functional gene composition in the rhizosphere and root-plaque compartments were characterized using the GeoChip 4.0 microarray. Arsenic speciation and concentrations were analyzed in the rhizosphere soil, root-plaque, porewater and grain samples. Results indicated that intermittent flooding significantly altered As-speciation in the rhizosphere, and reduced methyl-As and AsIII concentrations in the pore water, root-plaque and rice grain. Ordination and taxonomic analysis of detected gene-probes indicated that root-plaque and rhizosphere assembled significantly different metal-transforming functional groups. Taxonomic non-redundancy was evident, suggesting that As-reduction, -oxidation and -methylation processes were performed by different microbial groups. As-transformation was coupled to different biogeochemical cycling processes establishing functional non-redundancy of rice-rhizosphere microbiome in response to both rhizosphere compartmentalization and experimental treatments. This study confirmed diverse As-biotransformation at root-soil interface and provided novel insights on their responses to water management, which can be applied for mitigating As-bioavailability and accumulation in rice grains.
Project description:This data set contains 1376 mass spectrometry reads from root, rhizosphere and leaf sample of Populus Trichocarpa, as well as associated controls. This metabolomics data set was collected as part of a larger campaign which complements the metabolomics data with metagenome sequencing, transcriptomics, and soil measurement data.
Project description:Plants reorganize their root architecture to avoid growth into unfavorable regions of the rhizosphere. In a screen based on chimeric repressor gene-silencing technology, we identified the Arabidopsis thaliana GeBP-LIKE 4 (GPL4) transcription factor as an inhibitor of root growth that is induced rapidly in root tips in response to cadmium (Cd). We tested the hypothesis that GPL4 functions in the root avoidance of Cd by analyzing root proliferation in split medium, in which only half of the medium contained toxic concentrations of Cd. The wild-type (WT) plants exhibited root avoidance by inhibiting root growth in the Cd side but increasing root biomass in the control side. By contrast, GPL4-suppression lines exhibited nearly comparable root growth in the Cd and control sides and accumulated more Cd in the shoots than did the WT. GPL4 suppression also altered the root avoidance of toxic concentrations of other essential metals, modulated the expression of many genes related to oxidative stress, and consistently decreased reactive oxygen species concentrations. We suggest that GPL4 inhibits the growth of roots exposed to toxic metals by modulating reactive oxygen species concentrations, thereby allowing roots to colonize noncontaminated regions of the rhizosphere.thereby re-allocating root biomass toward non-contaminated rhizosphere areas and minimizing root exposure to toxic metals.
Project description:For environmental safety, the high concentration of heavy metals in the soil should be removed. Cadmium (Cd), one of the heavy metals polluting the soil while its concentration exceeds 3.4 mg/kg in soil. Potential use of cotton for remediating heavy Cd-polluted soils is available while its molecular mechanisms of Cd tolerance remains unclear in cotton. In this study, transcriptome analysis was used to identify the Cd tolerance genes and their potential mechanism in cotton. Finally 4,627 differentially expressed genes (DEGs) in the root, 3,022 DEGs in the stem and 3,854 DEGs in leaves were identified through RNA-Seq analysis, respectively. These genes contained heavy metal transporter genes (ABC, CDF, HMA, etc.), annexin genes, heat shock genes (HSP) amongst others. Gene ontology (GO) analysis showed that the DEGs were mainly involved in the oxidation-reduction process and metal ion binding. The DEGs mainly enriched in two pathways, the influenza A and the pyruvate pathway. GhHMAD5 protein, containing a heavy-metal domain, was identified in the pathway to transport or to detoxify the heavy ion. GhHMAD5-overexpressed plants of Arabidopsis thaliana showed the longer roots compared with the control. Meanwhile, GhHMAD5-silenced cotton plants showed more sensitive to Cd stress compared with the control. The results indicated that GhHMAD5 gene is remarkably involved in Cd tolerance, which gives us a preliminary understanding of Cd tolerance mechanisms in upland cotton. Overall, this study provides valuable information for the use of cotton to remediate the soil polluted with heavy metals.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Plants and rhizosphere microbes rely closely on each other, with plants supplying carbon to bacteria in root exudates, and bacteria mobilizing soil-bound phosphate for plant nutrition. When the phosphate supply becomes limiting for plant growth, the composition of root exudation changes, affecting rhizosphere microbial communities and microbially-mediated nutrient fluxes. To evaluate how plant phosphate deprivation affects rhizosphere bacteria, Lolium perenne seedlings were root-inoculated with Pseudomonas aeruginosa 7NR, and grown in axenic microcosms under different phosphate regimes (330 uM vs 3-6 uM phosphate). The effect of biological nutrient limitation was examined by DNA microarray studies of rhizobacterial gene expression.
Project description:This data set contains 1376 mass spectrometry reads from root, rhizosphere and leaf sample of Populus Trichocarpa, as well as associated controls. This metabolomics data set was collected as part of a larger campaign which complements the metabolomics data with metagenome sequencing, transcriptomics, and soil measurement data.
Project description:Rhizosphere is a complex system of interactions between plant roots, bacteria, fungi and animals, where the release of plant root exudates stimulates bacterial density and diversity. However, the majority of the bacteria in soil results to be unculturable but active. The aim of the present work was to characterize the microbial community associated to the root of V. vinifera cv. Pinot Noir not only under a taxonomic perspective, but also under a functional point of view, using a metaproteome approach. Our results underlined the difference between the metagenomic and metaproteomic approach and the large potentiality of proteomics in describing the environmental bacterial community and its activity. In fact, by this approach, that allows to investigate the mechanisms occurring in the rhizosphere, we showed that bacteria belonging to Streptomyces, Bacillus and Pseudomonas genera are the most active in protein expression. In the rhizosphere, the identified genera were involved mainly in phosphorus and nitrogen soil metabolism.
Project description:The presence of genetic groups of the entomopathogenic fungus Metarhizium anisopliae in soil is shaped by its adaptability to specific soil and habitat types, and by soil insect populations. Although the entomopathogenic life style of this fungus is well studied, its saprophytic life style has received little consideration. While a set of functionally related genes can be commonly expressed for the adaptability of this fungus to different environments (insect cuticle, insect blood and root exudates), a different subset of genes is also expected for each environment. In order to increase the knowledge of the potential use of M. anisopliae as a rhizosphere competent organism, in this study we evaluated the genetic expression of this fungus while growing on plant root exudates in laboratory conditions during a time course.