Identification and Functional Analysis of Novel Oncogenes in Pancreatic Ductal Adenocarcinoma
Ontology highlight
ABSTRACT: For identifying the specific expressed genes in PDAC, we constructed sequencing libraries from polyadenylated-RNA extracted from 6 PDAC specimens and 6 non-tumor adjacent tissues.
Project description:For identifying the specific expressed genes in PDAC, we constructed sequencing libraries from polyadenylated-RNA extracted from 6 PDAC specimens and 6 non-tumor adjacent tissues.
Project description:Determine methylation pattern in PDAC a genome-wide analysis was performed in a cohort of 167 PDAC and 29 adjacent pancreatic tissues samples using the Infinium 450k methylation arrays (Illumina). 167 pancreatic tumors (PDAC) x 29 adjacent -non tumor samples.
Project description:<p>Cancer-associated fibroblasts (CAFs) are major players in the progression and drug resistance of pancreatic ductal adenocarcinoma (PDAC). CAFs constitute a diverse cell population consisting of several recently described subtypes, although the extent of CAF heterogeneity has remained undefined. Here we employ single-cell RNA-sequencing to thoroughly characterize the neoplastic and tumor microenvironment content of human PDAC tumors. Six human PDAC tumor specimens from six patients were collected, and processed for single-cell RNA-sequencing analysis. Adjacent-normal pancreas tissue was also collected from two of the patients. Tumor samples were digested, and fluorescence-activated cell sorting was used to isolate viable cells. For one tumor sample, viable, CD45-negative, CD31-negative, and EpCAM-negative cells were also isolated to enrich for CAFs. The 10X Chromium platform was then used to isolate single cells for RNA-sequencing analysis. This work has demonstrated the differences in immune cell populations between adjacent-normal and tumor tissues, and identified subpopulations of epithelial cells and CAFs present in PDAC tumors. This high-throughput analysis is a resource to better understand the cell populations present in PDAC, and may ultimately aid in the development of more effective therapies for this deadly malignancy.</p>
Project description:Gene expression analysis was performed on tumor-derived RNA from human PDAC xenograft to study the metabolic differences in the different PDAC subtypes
Project description:Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers, but divergent outcomes are apparent between patients. To delineate the intertumor heterogeneity that contributes to this, we aimed to identify clinically distinct gene expression-based subgroups. From a cohort of 345 resected pancreatic cancer cases, 90 samples with confirmed diagnosis of PDAC and sufficient tumor content were available for gene expression analysis by RNA sequencing. Unsupervised classification was applied, and a classifier was constructed. Species-specific transcript analysis on matching patient-derived xenografts (PDX, N=14) allowed construction of tumor- and stroma-specific classifiers for use on PDX models and cell lines.
Project description:To explore the potential involvement of circular RNAs (circRNAs) in pancreatic ductal adenocarcinoma (PDAC) oncogenesis, we conducted circRNA profiling in six pairs of human PDAC and adjacent normal tissue by microarray. Our results showed that clusters of circRNAs were aberrantly expressed in PDAC compared with normal samples, and provided potential targets for future treatment of PDAC and novel insights into PDAC biology. Analyze circular RNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform.
Project description:Determine methylation pattern in PDAC a genome-wide analysis was performed in a cohort of 167 PDAC and 29 adjacent pancreatic tissues samples using the Infinium 450k methylation arrays (Illumina).
Project description:To explore the potential involvement of circular RNAs (circRNAs) in pancreatic ductal adenocarcinoma (PDAC) oncogenesis, we conducted circRNA profiling in six pairs of human PDAC and adjacent normal tissue by microarray. Our results showed that clusters of circRNAs were aberrantly expressed in PDAC compared with normal samples, and provided potential targets for future treatment of PDAC and novel insights into PDAC biology.
Project description:To explore the potential involvement of lncRNAs in pancreatic ductal adenocarcinoma (PDAC) oncogenesis, we conducted lncRNA profiling in six pairs of human PDAC and adjacent normal tissue by microarray. Our results showed that clusters of lncRNAs were aberrantly expressed in PDAC compared with normal samples, and provided potential targets for future treatment of PDAC and novel insights into PDAC biology.