Project description:DNA methylation can be established by RNA-directed DNA methylation (RdDM) in plants. The association of RNA polymerase V (Pol V) with chromatin is a critical step for RdDM. While the SRA-domain-containing proteins SUVH2 and SUVH9 and the DDR complex are known to be required for the association of Pol V with chromatin, it is unknown whether the association of Pol V with chromatin requires other unidentified regulators. Here we found that SUVH9 is able to interact with a conserved histone-interaction protein, FVE, and a previously uncharacterized RRM domain-containing protein, which we named RRM1. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci, while RRM1 is only slightly involved in RdDM. FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than FVE-independent RdDM target loci. FVE was previously shown to be a shared subunit of the RPD3-type histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex, both of which are involved in transcriptional repression. This study reveals a previously uncharacterized role of FVE in RdDM and suggests that FVE may coordinate RdDM, histone deacetylation, and H3K27 trimethylation, thus ensuring transcriptional silencing of TEs in gene-rich chromosome arms to protect genes from harmful effects of potentially transcribed TEs.
Project description:DNA methylation can be established by RNA-directed DNA methylation (RdDM) in plants. The association of RNA polymerase V (Pol V) with chromatin is a critical step for RdDM. While the SRA-domain-containing proteins SUVH2 and SUVH9 and the DDR complex are known to be required for the association of Pol V with chromatin, it is unknown whether the association of Pol V with chromatin requires other unidentified regulators. Here we found that SUVH9 is able to interact with a conserved histone-interaction protein, FVE, and a previously uncharacterized RRM domain-containing protein, which we named RRM1. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci, while RRM1 is only slightly involved in RdDM. FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than FVE-independent RdDM target loci. FVE was previously shown to be a shared subunit of the RPD3-type histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex, both of which are involved in transcriptional repression. This study reveals a previously uncharacterized role of FVE in RdDM and suggests that FVE may coordinate RdDM, histone deacetylation, and H3K27 trimethylation, thus ensuring transcriptional silencing of TEs in gene-rich chromosome arms to protect genes from harmful effects of potentially transcribed TEs.
Project description:DNA methylation can be established by RNA-directed DNA methylation (RdDM) in plants. The association of RNA polymerase V (Pol V) with chromatin is a critical step for RdDM. While the SRA-domain-containing proteins SUVH2 and SUVH9 and the DDR complex are known to be required for the association of Pol V with chromatin, it is unknown whether the association of Pol V with chromatin requires other unidentified regulators. Here we found that SUVH9 is able to interact with a conserved histone-interaction protein, FVE, and a previously uncharacterized RRM domain-containing protein, which we named RRM1. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci, while RRM1 is only slightly involved in RdDM. FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than FVE-independent RdDM target loci. FVE was previously shown to be a shared subunit of the RPD3-type histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex, both of which are involved in transcriptional repression. This study reveals a previously uncharacterized role of FVE in RdDM and suggests that FVE may coordinate RdDM, histone deacetylation, and H3K27 trimethylation, thus ensuring transcriptional silencing of TEs in gene-rich chromosome arms to protect genes from harmful effects of potentially transcribed TEs.
Project description:DNA methylation can be established by RNA-directed DNA methylation (RdDM) in plants. The association of RNA polymerase V (Pol V) with chromatin is a critical step for RdDM. While the SRA-domain-containing proteins SUVH2 and SUVH9 and the DDR complex are known to be required for the association of Pol V with chromatin, it is unknown whether the association of Pol V with chromatin requires other unidentified regulators. Here we found that SUVH9 is able to interact with a conserved histone-interaction protein, FVE, and a previously uncharacterized RRM domain-containing protein, which we named RRM1. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci, while RRM1 is only slightly involved in RdDM. FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than FVE-independent RdDM target loci. FVE was previously shown to be a shared subunit of the RPD3-type histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex, both of which are involved in transcriptional repression. This study reveals a previously uncharacterized role of FVE in RdDM and suggests that FVE may coordinate RdDM, histone deacetylation, and H3K27 trimethylation, thus ensuring transcriptional silencing of TEs in gene-rich chromosome arms to protect genes from harmful effects of potentially transcribed TEs
Project description:FIP-fve, a fungal fruiting body protein from Flammulina velutipes, has potential immunomodulatory properties. Here, we investigated the immunomodulation mechanism of FIP-fve in Jurkat E6-1 cells by conducting cell viability assay and IL-2 release assay. Kinase inhibitors experiment and proteomics analysis were also involved in the mechanism study. It was found that FIP-fve stimulated cell proliferation and enhanced IL-2 secretion in a dose-dependent manner in Jurkat E6-1 cells. Unbiased high-throughput proteomics analysis showed that 4 T cell immune activation markers including ZAP-70, CD69, CD82 and KIF23 were upregulated in response to FIP-fve treatment. Further pathway analysis indicated that MAP2K3/p38 pathway related proteins including MAP2K, p38, ELK, AATF, FOS, and JUN-B were unregulated. In addition, losmapimod (p38 inhibitor) and gossypetin (MAP2K3 inhibitor) inhibited FIP-fve enhanced cell proliferation and IL-2 release in Jurkat E6-1 cells. Our results demonstrate that FIP-fve stimulates cell proliferation and enhances IL-2 secretion through MAP2K3/ p38α activation.