The histone chaperone Spt6 is required for normal recruitment of the capping enzyme Abd1 to transcribed regions
Ontology highlight
ABSTRACT: The histone chaperone Spt6 is involved in promoting elongation of RNA polymerase II (RNAPII), maintaining chromatin structure, regulating co-transcriptional histone modifications, and controlling mRNA processing. These diverse functions of Spt6 are partly mediated through its interactions with RNAPII and other factors in the transcription elongation complex. In this study, we used mass spectrometry to characterize the differences in RNAPII interacting factors between wild-type cells and those depleted for Spt6, leading to the identification of proteins that depend on Spt6 for their interaction with RNAPII. The altered association of some of these factors could be attributed to changes in steady-state protein levels. However, Abd1, the mRNA cap methyltransferase, had decreased association with RNAPII after Spt6 depletion despite unchanged Abd1 protein levels, showing a requirement for Spt6 in mediating the Abd1-RNAPII interaction. Genome-wide studies showed that Spt6 is required for maintaining the level of Abd1 over transcribed regions, as well as the level of Spt5, another protein known to recruit Abd1 to chromatin. Abd1 levels were particularly decreased at the 5’ ends of genes after Spt6 depletion, suggesting a greater need for Spt6 in Abd1 recruitment over these regions. Together, our results show that Spt6 is important in regulating the composition of the transcription elongation complex and reveal a previously unknown function for Spt6 in the recruitment of Abd1.
Project description:The histone chaperone Spt6 is involved in promoting elongation of RNA polymerase II (RNAPII), maintaining chromatin structure, regulating co-transcriptional histone modifications, and controlling mRNA processing. These diverse functions of Spt6 are partly mediated through its interactions with RNAPII and other factors in the transcription elongation complex. In this study, we used mass spectrometry to characterize the differences in RNAPII interacting factors between wild-type cells and those depleted for Spt6, leading to the identification of proteins that depend on Spt6 for their interaction with RNAPII. In all, eight samples were processed - four genotypes (1. SPT6, RPB3-untagged; 2. SPT6, RPB3-tagged; 3. spt6-1004, RPB3-untagged; 4. spt6-1004; RPB3-tagged) in biological duplicates.
Project description:SPT6 is a conserved elongation factor that is associated with phosphorylated RNA polymerase II (RNAPII) during transcription. Recent transcriptome analysis in yeast mutants revealed its potential role in the control of transcription initiation at genic promoters. However, the mechanism by which this is achieved and how this is linked to elongation remains to be elucidated. Here, we present the genome-wide occupancy of Arabidopsis SPT6-like (SPT6L) and demonstrate its conserved role in facilitating RNAPII occupancy across transcribed genes. We also further demonstrate that SPT6L enrichment is unexpectedly shifted, from gene body to transcription start site (TSS), when its association with RNAPII is disrupted. Protein domains, required for proper function and enrichment of SPT6L on chromatin, are subsequently identified. Finally, our results suggest that recruitment of SPT6L at TSS is indispensable for its spreading along the gene body during transcription. These findings provide new insights into the mechanisms underlying SPT6L recruitment in transcription and shed light on the coordination between transcription initiation and elongation.
Project description:The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues in Rpb1 in a region between the catalytic core and the heptad repeats of its C-terminal domain (CTD). This interaction contributes to the global occupancy of Spt6 within transcription units, suggesting that it has a general role in tethering Spt6 to the elongation complex. However, we show here that disrupting this binding caused increases in some transcripts, revealing specific functional roles in regulating the expression of subsets of genes. These included loci whose regulation involves differential transcription start site selection, early termination of transcription, or efficient restoration of chromatin integrity after transcription. Loss of this interaction also caused a defect in splicing, and apparent pausing of RNAPII progression in regions requiring more complex processing of excised introns. The results support a global role for the Spt6-tSH2:Rpb1 interaction as one of several means of stabilizing the association of Spt6 with RNAPII, but they also reveal local functions at specific sites, especially those where dynamic decisions regarding initiation or termination are made, or where changes in the configuration of associated factors occur. We therefore propose that the Spt6-tSH2:Rpb1 interaction can provide a conduit for communication between RNAPII and the elongation factor function of Spt6, or with other factors associated with the Rpb1 CTD, supporting appropriate elongation through challenging templates and efficient co-transcriptional processing.
Project description:Spt6 is an essential histone chaperone that mediates nucleosome reassembly during gene transcription. Spt6 interacts with elongating RNA polymerase II (RNAPII) via a tandem Src2 homology (tSH2) domain, but it is not known whether this particular interaction is required for the nucleosome reassembly activity of Spt6. Here, we show that Spt6 recruitment to genes and its nucleosome reassembly functions are largely independent of association with RNAPII. Instead, the Spt6-RNAPII association is required for post-transcriptional mRNA turnover. Mechanistically, association of Spt6 with RNAPII couples the Ccr4-Not complex to the transcribed regions of genes, which we show regulates the timely deadenylation and degradation of a broad range of mRNAs including those required for cell cycle progression. Thus, our findings reveal an unexpected control mechanism for mRNA turnover facilitated by a histone chaperone during transcription.
Project description:Spt6 is a multifunctional histone chaperone involved in the maintenance of chromatin structure during elongation by RNA polymerase II (Pol II). Spt6 has a tandem SH2 (tSH2) domain within its C-terminus that recognizes Pol II CTD peptides phosphorylated on Ser2, Ser5 or Try1 in vitro. Deleting the tSH2 domain, however, only has a partial effect on Spt6 occupancy in vivo, suggesting that more complex mechanisms are involved in the Spt6 recruitment. Our results show that the Ser2 kinases Bur1 and Ctk1, but not the Ser5 kinase Kin28, cooperate in recruiting Spt6, genome-wide. Interestingly, the Ser2 kinases promote the association of Spt6 in early transcribed regions and not toward the 3' end of genes, where phosphorylated Ser2 reaches its maximum level. Additionally, our results uncover an unexpected role for histone deacetylases (Rpd3 and Hos2) in promoting Spt6 interaction with elongating Pol II. Finally, our data suggest that phosphorylation of the Pol II CTD on Tyr1 promotes the association of Spt6 with the 3' end of transcribed genes, independently of Ser2 phosphorylation. Collectively, our results show that a complex network of interactions, involving the Spt6 tSH2 domain, CTD phosphorylation and histone deacetylases, coordinate the recruitment of Spt6 to transcribed genes in vivo. We examined the genome-wide distribution (using ChIP-chip) of Spt6. Spt6 occupancy was also assayed in mutants for CTD Serine 2 and Serine 5 kinases and in mutants for histone deacetylases. ChIPs were performed with a Myc-tagged version of Spt6. Most ChIPs (in Cy5) were hybridyzed against a control ChIP sample from an isogenic non-tagged strain (in Cy3). In the ChIP experiments with the spt6-202del mutant, non immunoprecipitated DNA (input) was used as the control. In addition to Spt6 ChIPs, the project includes RNAPII (Rpb3) ChIP-chip datasets, where an anti-Rpb3 antibody was used to ChIP RNAPII and non immunoprecipitated DNA (input) was used as the control. All ChIP-chip experiments were done in duplicates. Each microarray was normalized using the Lima Loess and replicates were combined using a weighted average method as previously described (Pokholok et al., 2005).
Project description:Spt6-Spn1 is an essential histone chaperone complex that associates with RNA Polymerase II (RNAPII) and reassembles nucleosomes during gene transcription. While Spt6-Spn1 interaction is important to its histone deposition and transcription functions, a precise understanding of how Spt6-Spn1 association contributes to its functions is still limited. Here, using temperature sensitive alleles of spt6 and spn1 that disrupt their interaction, we show that Spt6-Spn1 association is broadly important for its interaction with the elongating RNAPII complex and nucleosomes. Using micrococcal nuclease (MNase)-based chromatin occupancy profiling, we further find that Spt6-Spn1 interaction is required for maintaining the preferred nucleosome positioning generated from replication-dependent histone deposition at actively transcribed genes. These analyses also reveal an overall shift of nucleosomes towards the 5’ end of genes that correlates with decreased RNAPII levels. While loss of Spt6 and Spn1 function is known to promote cryptic transcription, the nucleosome defects found in spt6 and spn1 mutants that interfere with their interaction were observed broadly across transcribed genes, further highlighting the role of DNA sequence as a mediator of cryptic transcription when nucleosomes positioning is altered. Taken together, these findings reveal Spt6-Spn1 interaction is key to its association with elongating RNAPII and for its ability to precisely organize nucleosomes across transcription units.
Project description:The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues of the Rpb1 subunit in the linker between the catalytic core and the C-terminal domain (CTD) heptad repeats. This interaction contributes to generic localization of Spt6, but we show here that it also has gene-specific roles. Disrupting the interface affected transcription start site selection at a subset of genes whose expression is regulated by this choice, and this was accompanied by changes in a distinct pattern of Spt6 accumulation at these sites. Splicing efficiency was also diminished, as was apparent progression through introns that encode snoRNAs. Chromatin-mediated repression was impaired, and a distinct role in maintaining +1 nucleosomes was identified, especially at ribosomal protein genes. The Spt6-tSH2:Rpb1 interface therefore has both genome-wide functions and local roles at subsets of genes where dynamic decisions regarding initiation, transcript processing, or termination are made. We propose that the interaction modulates the availability or activity of the core elongation and histone chaperone functions of Spt6, contributing to coordination between RNAPII and its accessory factors as varying local conditions call for dynamic responses.
Project description:Spt6 is a conserved factor, critically required for several transcription and chromatin related processes. We now show that Spt6 and its binding partner, Iws1, are required for heterochromatic silencing in Schizosaccharomyces pombe. Our studies demonstrate that Spt6 is required for silencing of all heterochromatic loci and that an spt6 mutant has an unusual combination of heterochromatic phenotypes compared to previously studied silencing mutants. Unexpectedly, we find normal nucleosome positioning over heterochromatin and normal levels of histone H3K9 dimethylation. However, we also find greatly reduced levels of H3K9 trimethylation, elevated levels of H3K14 acetylation, and reduced recruitment of several silencing factors. Our evidence suggests that Spt6 plays a role at both the transcriptional and post-transcriptional levels; in an spt6 mutant, RNA polymerase II (RNAPII) occupancy at the pericentric regions is only modestly increased, while production of small interfering RNAs (siRNAs) is lost. Taken together, our results suggest that Spt6 is required for multiple steps in heterochromatic silencing by controlling chromatin, transcriptional, and post-transcriptional processes.
Project description:In vitro studies identified various factors including P-TEFb, SEC, SPT6, PAF1, DSIF, and NELF functioning at different stages of transcription elongation driven by RNA polymerase II (RNA Pol II). What remains unclear is how these factors cooperatively regulate pause/release and productive elongation in the context of living cells. Using an acute 5 protein-depletion approach, prominent release and a subsequent increase in mature transcripts, whereas long genes fail to yield mature transcripts due to a loss of processivity. Mechanistically, loss of SPT6 results in loss of PAF1 complex (PAF1C) from RNA Pol II, leading to NELF-bound RNA Pol II release into the gene bodies. Furthermore, SPT6 and/or PAF1 depletion impairs heat shock-induced pausing, pointing to a role for SPT6 in regulating RNA Pol II pause/release through the recruitment of PAF1C during the early elongation.
Project description:In vitro studies identified various factors including P-TEFb, SEC, SPT6, PAF1, DSIF, and NELF functioning at different stages of transcription elongation driven by RNA polymerase II (RNA Pol II). What remains unclear is how these factors cooperatively regulate pause/release and productive elongation in the context of living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in release of paused RNA Pol II. Short genes demonstrate a prominent release and a subsequent increase in mature transcripts, whereas long genes fail to yield mature transcripts due to a loss of processivity. Unexpectedly, the recruitment of PAF1 complex (PAF1C) to RNA Pol II fails upon SPT6 depletion, leading to the release of NELF-bound RNA Pol II into the gene bodies. Furthermore, SPT6 depletion impairs heat shock-induced pausing, pointing to a role for SPT6 in regulating RNA Pol II pause-release through PAF1C recruitment and NELF removal during the early elongation.