RNA silencing by CRISPR in plants does not require Cas13
Ontology highlight
ABSTRACT: The associated experiments document the production of small RNA (sRNA) during the expression of Cas13 and crRNA, crRNA alone, or controls from agrobacterium spot infiltration in Nicotiana benthamiana. We document the specific production of sRNA corresponding to the guide sequence of the targeted mRNA. In cases where a multi-guide crRNA or a hairpin were expressed, abundent sRNA are produced correspinding to the target mRNA, but outside of the corresponding guide sequence site.
Project description:Recent discovery of the gene editing system - CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) associated proteins (Cas), has resulted in its widespread use for improved understanding of a variety of biological systems, by enabling large-scale perturbation of the genomes and transcriptomes. Cas13, a lesser studied Cas protein, has been repurposed to allow for efficient and precise editing of RNA molecules. The Cas13 system utilizes base complementarity between a crRNA/sgRNA (crispr RNA or single guide RNA) and a target RNA transcript, to preferentially bind to only the target transcript. Unlike targeting the upstream regulatory regions of protein coding genes on the genome, the transcriptome is significantly more redundant, leading to many transcripts having wide stretches of identical nucleotide sequences. Transcripts also exhibit complex three-dimensional structures and interact with an array of RBPs (RNA Binding Proteins), both of which further limit the scope of effective target sequences. As a result, there currently exists no method to predict whether a specific sgRNA will effectively knockdown a transcript. Here we present a novel machine learning and computational tool, to predict the efficacy of a sgRNA. We used publicly available RNA knockdown data from cas13 characterization experiments1 for 555 sgRNAs targeting the transcriptome in HEK293 cells, in conjunction with transcriptome-wide protein occupancy information on RNA2. Our model utilizes a Decision Tree architecture with a set of 112 sequence and target availability features, to classify sgRNA efficacy into one of four classes, based upon expected level of target transcript knockdown. After accounting for noise in the training data set, the noise-normalized accuracy exceeds 90%. Additionally, highly effective sgRNA predictions have been experimentally validated using an independent RNA targeting cas system – CIRTS3, confirming the robustness and reproducibility of our model’s sgRNA predictions. In particular, several highly efficient sgRNA’s designed using our model against SMARCA4 gene exhibited strong agreement with experimental data supporting a 10-fold decrease in expression. Utilizing transcriptome wide protein occupancy information, CASowary can predict high quality guides for different transcripts in a cell specific manner. Applications of CASowary to whole transcriptomes should enable rapid deployment of CRISPR/Cas13 systems, facilitating the development of therapeutic interventions linked with aberrations in RNA regulatory processes.
Project description:To gain a global view on the impact of the collateral activity on protein expression levels, mass spectrometry was used for proteomics analysis of HEK 293T cells when PspCas13b was co-expressed with non-targeted (NT) crRNA or targeting (T) crRNA, which targets the BCR-ABL1 mRNA breakpoint. There was no evidence of off-target protein degradation by T crRNA compared to the non-targeting crRNA. The only significantly repressed proteins were the target BCR-ABL1 p190 (81% reduction) and eGFP (89% reduction) that are encoded on the same mRNA expression construct and encoded mRNA. Catalytic dead Cas13 (dCas13) and crRNA only were used as negative control.
Project description:CRISPR-Cas13 systems have been adapted as versatile toolkits for RNA-related applications. Here we systematically evaluate the performance of several prominent Cas13 family effectors (Cas13a, Cas13b and Cas13d) under lentiviral vectors and reveal surprisingly differential defects and characteristics of these systems. Using RNA immunoprecipitation sequencing, transcriptome profiling, biochemistry analysis and high-throughput CRISPR-Cas13 screening approaches, we determine that each Cas13 system has its intrinsic RNA targets in mammalian cells. Viral process-related host genes can be targeted by Cas13 and affect the production of fertile lentiviral particles, thereby restricting the utility of lentiviral Cas13 systems. Multiple RNase activities of Cas13 are involved in endogenous RNA targeting. Unlike target-induced collateral effect, intrinsic RNA targeting can be specific, target-independent and dynamically tuned by varied states of Cas13 nucleases. Our work not only provides guidance to appropriately utilize lentiviral Cas13 systems, but also raises cautions about intrinsic RNA targeting during Cas13-based basic and therapeutic applications.
Project description:CRISPR-Cas13 systems have been adapted as versatile toolkits for RNA-related applications. Here we systematically evaluate the performance of several prominent Cas13 family effectors (Cas13a, Cas13b and Cas13d) under lentiviral vectors and reveal surprisingly differential defects and characteristics of these systems. Using RNA immunoprecipitation sequencing, transcriptome profiling, biochemistry analysis and high-throughput CRISPR-Cas13 screening approaches, we determine that each Cas13 system has its intrinsic RNA targets in mammalian cells. Viral process-related host genes can be targeted by Cas13 and affect the production of fertile lentiviral particles, thereby restricting the utility of lentiviral Cas13 systems. Multiple RNase activities of Cas13 are involved in endogenous RNA targeting. Unlike target-induced collateral effect, intrinsic RNA targeting can be specific, target-independent and dynamically tuned by varied states of Cas13 nucleases. Our work not only provides guidance to appropriately utilize lentiviral Cas13 systems, but also raises cautions about intrinsic RNA targeting during Cas13-based basic and therapeutic applications.
Project description:CRISPR-Cas13 systems have been adapted as versatile toolkits for RNA-related applications. Here we systematically evaluate the performance of several prominent Cas13 family effectors (Cas13a, Cas13b and Cas13d) under lentiviral vectors and reveal surprisingly differential defects and characteristics of these systems. Using RNA immunoprecipitation sequencing, transcriptome profiling, biochemistry analysis and high-throughput CRISPR-Cas13 screening approaches, we determine that each Cas13 system has its intrinsic RNA targets in mammalian cells. Viral process-related host genes can be targeted by Cas13 and affect the production of fertile lentiviral particles, thereby restricting the utility of lentiviral Cas13 systems. Multiple RNase activities of Cas13 are involved in endogenous RNA targeting. Unlike target-induced collateral effect, intrinsic RNA targeting can be specific, target-independent and dynamically tuned by varied states of Cas13 nucleases. Our work not only provides guidance to appropriately utilize lentiviral Cas13 systems, but also raises cautions about intrinsic RNA targeting during Cas13-based basic and therapeutic applications.
Project description:Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technologies have evolved rapidly over the past decade with the continuous discovery of new Cas systems. In particular, RNA-targeting CRISPR-Cas13 proteins are promising single-effector systems to regulate target mRNAs without altering genomic DNA, yet the current Cas13 systems are restrained by suboptimal efficiencies. Here, we show that U1 promoter-driven CRISPR RNAs (crRNAs) increase the efficiency of various applications, including RNA knockdown and editing, without modifying the Cas13 protein effector. We confirm that U1-driven crRNAs are exported into the cytoplasm, while conventional U6 promoter-driven crRNAs are mostly confined to the nucleus. Furthermore, we reveal that the end positions of crRNAs expressed by the U1 promoter are consistent regardless of guide sequences and lengths. We also demonstrate that U1-driven crRNAs, but not U6-driven crRNAs, can efficiently repress the translation of target genes in combination with catalytically inactive Cas13 proteins. Finally, we show that U1-driven crRNAs can counteract the inhibitory effect of miRNAs. Our simple and effective engineering enables unprecedented cytosolic RNA-targeting applications.
Project description:Small RNA (sRNA)-guided RNA silencing is a critical antiviral defense mechanism employed by a variety of eukaryotic organisms. Although the induction of RNA silencing by bipartite and monopartite begomoviruses has been described in plants, the nature of begomovirus/betasatellite complexes remains undefined. We profiled Tomato yellow leaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB)-derived small RNAs (V-sRNAs and S-sRNAs) using Solexa-based deep sequencing to evaluate the role of betasatellites in V-sRNA modulation. Both sense and anti-sense V-sRNAs and S-sRNAs accumulated preferentially as 22 nucleotide species in infected Solanum lycopersicum and Nicotiana benthamiana plants, indicating that secondary siRNAs were triggered. High resolution mapping of V-sRNA and S-sRNA revealed heterogeneous distribution of V-sRNA and S-sRNA sequences across the TYLCCNV and TYLCCNB genomes. In TYLCCNV-infected S. lycopersicum or N. benthamiana and TYLCCNV and betaC1-mutant TYLCCNB co-infected N. benthamiana plants, the primary TYLCCNV targets were AV2 and the 5’ terminus of AV1. In TYLCCNV and betasatellite-infected plants, the number of V-sRNAs targeting this region decreased and the production of V-sRNAs increased corresponding to the overlapping regions of AC2 and AC3, as well as the 3’ terminal of AC1. betaC1 is the primary determinant mediating symptom induction and also the primary silencing target of the TYLCCNB genome even in its mutated form. In addition, the betasatellite affected the amount of V-sRNAs detected in S. lycopersicum and N. benthamiana plants. characterization of Tomato yellow leaf curl China virus and Tomato yellow leaf curl China betasatellite-derived small interfering RNAs from five cDNA libraries of two plant species
Project description:Small RNA (sRNA)-guided RNA silencing is a critical antiviral defense mechanism employed by a variety of eukaryotic organisms. Although the induction of RNA silencing by bipartite and monopartite begomoviruses has been described in plants, the nature of begomovirus/betasatellite complexes remains undefined. We profiled Tomato yellow leaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB)-derived small RNAs (V-sRNAs and S-sRNAs) using Solexa-based deep sequencing to evaluate the role of betasatellites in V-sRNA modulation. Both sense and anti-sense V-sRNAs and S-sRNAs accumulated preferentially as 22 nucleotide species in infected Solanum lycopersicum and Nicotiana benthamiana plants, indicating that secondary siRNAs were triggered. High resolution mapping of V-sRNA and S-sRNA revealed heterogeneous distribution of V-sRNA and S-sRNA sequences across the TYLCCNV and TYLCCNB genomes. In TYLCCNV-infected S. lycopersicum or N. benthamiana and TYLCCNV and betaC1-mutant TYLCCNB co-infected N. benthamiana plants, the primary TYLCCNV targets were AV2 and the 5’ terminus of AV1. In TYLCCNV and betasatellite-infected plants, the number of V-sRNAs targeting this region decreased and the production of V-sRNAs increased corresponding to the overlapping regions of AC2 and AC3, as well as the 3’ terminal of AC1. betaC1 is the primary determinant mediating symptom induction and also the primary silencing target of the TYLCCNB genome even in its mutated form. In addition, the betasatellite affected the amount of V-sRNAs detected in S. lycopersicum and N. benthamiana plants.