An isoform of Dicer protects mammalian stem cells against multiple RNA viruses
Ontology highlight
ABSTRACT: In mammals, early resistance to viruses relies on interferons, which protect differentiated but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialised Dicer protein that cleaves viral double stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. Here we identify an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses, including Zika virus and SARS-CoV-2, by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity in which different cell-intrinsic antiviral pathways are tailored to the differentiation status of cells.
Project description:Bats harbor highly virulent viruses that can infect other mammals, including humans, posing questions about their immune tolerance mechanisms. Bat cells employ multiple strategies to limit virus replication and virus-induced immunopathology, but the coexistence of bats and fatal viruses remains poorly understood. Here, we investigated the antiviral RNA interference (RNAi) pathway in bat cells and discovered that they have an enhanced antiviral RNAi response, producing canonical viral small interfering RNAs (vsiRNAs) upon Sindbis virus (SINV) infection that were missing in human cells. Disruption of Dicer function resulted in increased viral load for three different RNA viruses in bat cells, indicating an interferon-independent antiviral pathway. Furthermore, our findings reveal the simultaneous engagement of Dicer and pattern-recognition receptors (PRRs), such as retinoic acid-inducible gene I (RIG-I), with double-stranded RNA, suggesting that Dicer attenuates the interferon response initiation in bat cells. These insights advance our comprehension of the distinctive strategies bats employ to coexist with viruses.
Project description:Bats harbor highly virulent viruses that can infect other mammals, including humans, posing questions about their immune tolerance mechanisms. Bat cells employ multiple strategies to limit virus replication and virus-induced immunopathology, but the coexistence of bats and fatal viruses remains poorly understood. Here, we investigated the antiviral RNA interference (RNAi) pathway in bat cells and discovered that they have an enhanced antiviral RNAi response, producing canonical viral small interfering RNAs (vsiRNAs) upon Sindbis virus (SINV) infection that were missing in human cells. Disruption of Dicer function resulted in increased viral load for three different RNA viruses in bat cells, indicating an interferon-independent antiviral pathway. Furthermore, our findings reveal the simultaneous engagement of Dicer and pattern-recognition receptors (PRRs), such as retinoic acid-inducible gene I (RIG-I), with double-stranded RNA, suggesting that Dicer attenuates the interferon response initiation in bat cells. These insights advance our comprehension of the distinctive strategies bats employ to coexist with viruses.
Project description:Plants and invertebrates protect themselves from viruses through RNA interference (RNAi), yet it remains unknown whether this defense mechanism exists in mammals. Antiviral RNAi involves the processing of viral long double-stranded (ds) RNA molecules into small interfering RNAs (siRNAs) by the ribonuclease (RNAse) III Dicer. These siRNAs are incorporated into effector complex(es) containing members of the Argonaute (Ago) protein family and guide silencing of complementary target viral RNAs. Here, we detect the accumulation of phased Dicer-dependent virus-derived siRNA (viRNAs) and demonstrate their loading into Ago2 after infection of mouse embryonic stem (ES) cells with Encephalomyocarditis virus (EMCV). We further show that the production of these viRNAs is drastically reduced, yet not completely abolished, if ES cells are first induced to differentiate before infection. Finally, we reveal that the mammalian virus Nodamura virus (NoV) encodes for a protein that counteracts such antiviral RNAi in ES cells supporting the existence of an effective RNAi-based immunity in mammals. Infection of wild-type or mutant mouse ES cells and analysis of small RNAs from total extracts or immunoprecipitated components of the RNAi pathway
Project description:Plants and invertebrates protect themselves from viruses through RNA interference (RNAi), yet it remains unknown whether this defense mechanism exists in mammals. Antiviral RNAi involves the processing of viral long double-stranded (ds) RNA molecules into small interfering RNAs (siRNAs) by the ribonuclease (RNAse) III Dicer. These siRNAs are incorporated into effector complex(es) containing members of the Argonaute (Ago) protein family and guide silencing of complementary target viral RNAs. Here, we detect the accumulation of phased Dicer-dependent virus-derived siRNA (viRNAs) and demonstrate their loading into Ago2 after infection of mouse embryonic stem (ES) cells with Encephalomyocarditis virus (EMCV). We further show that the production of these viRNAs is drastically reduced, yet not completely abolished, if ES cells are first induced to differentiate before infection. Finally, we reveal that the mammalian virus Nodamura virus (NoV) encodes for a protein that counteracts such antiviral RNAi in ES cells supporting the existence of an effective RNAi-based immunity in mammals.
Project description:In RNA interference (RNAi), long double-stranded RNA (dsRNA) is cleaved by Dicer endonuclease into small RNA interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates adopted sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi. Next, we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: Coxsackievirus B3 (CVB3) and encephalomyocarditis virus (ECMV) from Picornaviridae; tick-borne encephalitis virus (TBEV) from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice had no antiviral effect. This result supports insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also report that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Project description:In RNA interference (RNAi), long double-stranded RNA (dsRNA) is cleaved by Dicer endonuclease into small RNA interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates adopted sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi. Next, we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: Coxsackievirus B3 (CVB3) and encephalomyocarditis virus (ECMV) from Picornaviridae; tick-borne encephalitis virus (TBEV) from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice had no antiviral effect. This result supports insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also report that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Project description:In RNA interference (RNAi), long double-stranded RNA (dsRNA) is cleaved by Dicer endonuclease into small RNA interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates adopted sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi. Next, we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: Coxsackievirus B3 (CVB3) and encephalomyocarditis virus (ECMV) from Picornaviridae; tick-borne encephalitis virus (TBEV) from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice had no antiviral effect. This result supports insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also report that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Project description:In RNA interference (RNAi), long double-stranded RNA (dsRNA) is cleaved by Dicer endonuclease into small RNA interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates adopted sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi. Next, we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: Coxsackievirus B3 (CVB3) and encephalomyocarditis virus (ECMV) from Picornaviridae; tick-borne encephalitis virus (TBEV) from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice had no antiviral effect. This result supports insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also report that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Project description:In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG-I like receptor (RLR) family , which signal to induce production of type I interferons (IFN). These key anti-viral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon-stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG-I, MDA5 and the least-studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus-derived double stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We identify Dicer as an LGP2-associated protein and show that LGP2 inhibits Dicer cleavage of dsRNA into siRNAs both in vitro and in vivo. Further, we show that in cells lacking an IFN response, ectopic expression of LGP2 interferes with RNAi-dependent suppression of gene expression. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs.
Project description:Background: RNA silencing pathways play critical roles in gene regulation, virus infection, and transposon control. RNA interference (RNAi) is mediated by small interfering RNAs (siRNAs), which are liberated from double stranded (ds) RNA precursors by Dicer and direct the RNA-induced silencing complex (RISC) to target transcripts. Recent efforts have uncovered important principles governing small RNA (smRNA) sorting into RISC, yet mechanisms defining substrate selection by Dicer proteins remain uncharacterized. Methodology: To better characterize Dicer-2 substrates in Drosophila, we examined the antiviral RNAi response, which generates virus-derived siRNAs from viral RNA. Using high-throughput sequencing, we found that diverse viruses were uniquely targeted; substrates included dsRNA replication intermediates and intramolecular RNA stem loops. smRNA distribution patterns from viral and synthetic dsRNA precursors were highly reproducible, and machine learning techniques identified characteristics of precursor molecules and smRNA duplexes important in determining relative smRNA abundance. Significance: To our knowledge, this study provides the first description of the rules governing Dicer-2 substrate selection, which has important implications for exogenous RNA silencing technologies and the development of smRNA-based antiviral therapeutics. virus-derived siRNA (vsiRNA) expression comparison between control and 4 different virus-infected cells in control as well as 5 different RNAi pathway protein knock-downs in Drosophila dl1 cells