Coordination of frontline defense mechanisms under severe oxidative stress.
Ontology highlight
ABSTRACT: Oxidative stress (OS) results from genetic defects or stressful environmental challenges that cause unchecked production of reactive oxygen species (ROS). OS has been implicated in many diseases due to its wide ranging damage to nucleic acids, proteins and lipids. Using Halobacterium salinarum NRC-1, an extremophile that thrives under conditions of excessive OS, we have constructed a systems model for oxidative stress response (OSR) by integrating transcriptional changes induced by treatments with H2O2 and paraquat, functional associations inferred through comparative genomics, and de novo discovered cis-regulatory motifs. Together with phenotypic analysis of mutant strains this has revealed a multi-tiered OS management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids, and gas vesicles, metal trafficking, and various other aspects of metabolism. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was previously constructed from cellular responses to diverse environmental perturbations –this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of g rays.
ORGANISM(S): Halobacterium salinarum Halobacterium salinarum NRC-1
PROVIDER: GSE17515 | GEO | 2010/05/26
SECONDARY ACCESSION(S): PRJNA118789
REPOSITORIES: GEO
ACCESS DATA