Early transcriptional changes in rabies virus-infected neurons and extended effects on neuronal functions
Ontology highlight
ABSTRACT: Street-strain rabies virus primarily replicates in central nervous system without inducing significant immune response or structural damages on neurons, but the manifested symptoms of rabies indicate inherent neuronal dysfunctions in CNS. To understand the underlying state of rabies virus-infected neurons and find probable mechanisms for the neuronal dysfunction, we performed RNA-Seq at multiple time-points. This dataset provides RNA-Seq results of wild-type and mutant rabies virus-infected neuron transcriptome, with clear differential expressions between conditions. Through comparative analysis of different time-points, we have found that the matrix protein of rabies virus plays an important role in early suppression of host gene expression and maintaining control over immune response and other processes. The signaling pathways previously known to interact with rabies virus were confirmed to be modulated in this dataset, and contribute to neuronal function-associated processes. We have verified the regulation of gene expressions that could impact neuronal functions collectively, and demonstrated in calcium imaging that indeed the oscillation of calcium trace in neurons are influenced by rabies virus infection.
ORGANISM(S): Homo sapiens
PROVIDER: GSE178583 | GEO | 2021/11/04
REPOSITORIES: GEO
ACCESS DATA