Massively Parallel Characterization and Prediction of Disease-Associated Branch Site Variants that Perturb RNA Splicing
Ontology highlight
ABSTRACT: It is estimated that 10-30% of disease-associated genetic variants affect splicing. Splicing variants may generate deleteriously altered gene product and are potential therapeutic targets. However, experimental diagnosis for splicing variants is time-consuming and reliable computational prediction tools have not been established, especially for the 3’ end of introns. The major challenge lies in the redundant and ill-defined branch site motif therein. Here, we carried out unbiased massively parallel splicing assays on 5,307 disease-associated variants overlapped with branch sites. We observed that 11.0% (455 out of 4,154 valid comparisons) of candidate variants showed a consistent pattern of altered splicing across four experimental replicates, among which 244 candidates (6.1%) presented more than two-fold changes in the use of noncanonical splice sites and these are named high-confidence (HC) significant candidates.
ORGANISM(S): Homo sapiens
PROVIDER: GSE179892 | GEO | 2022/05/10
REPOSITORIES: GEO
ACCESS DATA