FluB-RAM and FluB-RANS: Genome re-arrangement as safe and efficacious live attenuated influenza B virus vaccines
Ontology highlight
ABSTRACT: Influenza B virus (IBV) is considered a major respiratory pathogen responsible for seasonal respiratory disease in humans, particularly severe in children and the elderly. Seasonal influenza vaccination is considered the most efficient strategy to prevent and control IBV infections. Live attenuated influenza virus vaccines (LAIVs) are thought to induce both humoral and cellular immune responses by mimicking a natural infection, but their effectiveness have recently come into question. Thus, the opportunity exists to find alternative approaches to improve overall influenza vaccine effectiveness. Two alternative IBV backbones were developed with re-arranged genomes, re-arranged M (FluB-RAM) and a re-arranged NS (FluB-RANS). Both re-arranged viruses showed temperature sensitivity in vitro compared to the WT type B/Bris strain, were genetically stable over multiple passages in embryonated chicken eggs and were attenuated in vivo in mice. In a prime-boost regime in naïve mice, both re-arranged viruses induced antibodies against HA with hemagglutination inhibition titers considered of protective value. In addition, antibodies against NA and NP were readily detected with potential protective value. Upon lethal IBV challenge, mice previously vaccinated with either FluB-RAM or FluB-RANS were completely protected against clinical disease and mortality. In conclusion, genome re-arrangement renders efficacious LAIV candidates to protect mice against IBV.
Project description:Influenza B virus (IBV) strains are one of the components of seasonal influenza vaccines in both trivalent and quadrivalent formulations. The vast majority of these vaccines are produced in embryonated chickens' eggs. While optimized backbones for vaccine production in eggs exist and are in use for influenza A viruses, no such backbones exist for IBVs, resulting in unpredictable production yields. To generate an optimal vaccine seed virus backbone, we have compiled a panel of 71 IBV strains from 1940 to present day, representing the known temporal and genetic variability of IBV circulating in humans. This panel contains strains from the B/Victoria/2/87-like lineage, B/Yamagata/16/88-like lineage and the ancestral lineage that preceded their split to provide a diverse set that would help to identify a suitable backbone which can be used in combination with hemagglutinin (HA) and neuraminidase (NA) glycoproteins from any IBV strain to be incorporated into the seasonal vaccine. We have characterized and ranked the growth profiles of the 71 IBV strains and the best performing strains were used for co-infection of eggs, followed by serial passaging to select for high-growth reassortant viruses. After serial passaging, we selected 10 clonal isolates based on their growth profiles assessed by hemagglutination and plaque-forming units. We then generated reverse genetics systems for the three clones that performed best in growth curves. The selected backbones were then used to generate different reassortant viruses with HA/NA combinations from high and low titer yielding wild type IBV. When the growth profiles of the recombinant reassortant viruses were tested, the low titer yielding HA/NA viruses with the selected backbones yielded higher titers similar to those from high titer yielding HA/NA combinations. The use of these IBV backbones with improved replication in eggs might increase yields for the influenza B virus components of seasonal influenza virus vaccines.
Project description:Influenza A virus (FLUAV) poses a significant threat to both humans and animals. While vaccination serves as the primary defense against influenza, the effectiveness of currently approved vaccines is suboptimal. To address this issue, we have developed modified live virus (MLV) vaccines against influenza using genome rearrangement techniques targeting the internal gene segments of FLUAV. The rearranged M2 (RAM) strategy involves cloning the M2 ORF downstream of the PB1 ORF in segment 2 and incorporating multiple early stop codons within the M2 ORF in segment 7. Additionally, the IgA-inducing protein (IGIP) coding region was inserted into the HA segment to further attenuate the virus and enhance protective mucosal responses. RAM-IGIP viruses exhibit similar growth rates to wild type (WT) viruses in vitro and remain stable during multiple passages in cells and embryonated eggs. The safety, immunogenicity, and protective efficacy of the RAM-IGIP MLV vaccine against the prototypical 2009 pandemic H1N1 strain A/California/04/2009 (H1N1) (Ca/04) were evaluated in Balb/c mice and compared to a prototypic cold-adapted live attenuated virus vaccine. The results demonstrate that the RAM-IGIP virus exhibits attenuated virulence in vivo. Mice vaccinated with RAM-IGIP and subsequently challenged with an aggressive lethal dose of the Ca/04 strain exhibited complete protection. Analysis of the humoral immune response revealed that the inclusion of IGIP enhanced the production of neutralizing antibodies and augmented the antibody-dependent cellular cytotoxicity response. Similarly, the RAM-IGIP potentiated the mucosal immune response against various FLUAV subtypes. Moreover, increased antibodies against NP and NA responses were observed. These findings support the development of MLVs utilizing genome rearrangement strategies in conjunction with the incorporation of immunomodulators.
Project description:Influenza B virus (FLUBV) is a major respiratory pathogen of humans. Seasonal influenza vaccines include either one or both FLUBV lineage strains, Victoria, and Yamagata. Vaccine mismatch occurs frequently, particularly in countries where vaccines contain only one of the lineages. We have previously described the safety and efficacy of modified live attenuated FLUBV vaccines based on either virus with rearranged genomes (FluB-RAM and FluB-RANS) or carrying a PB1 segment with a combination of temperature sensitive mutations and a C-terminal HA tag (FluB-att). We compared side by side the immunological responses in female and male DBA/2J mice vaccinated with either one of these vaccines and those with isogenic backgrounds encoding a chimeric HA segment carrying an N-terminal peptide encoding the IgA inducing peptide (IGIP). Recombinant viruses with or without the IGIP modification were genetically stable over multiple passages in eggs. In mice, introduction of IGIP improved attenuation of the vaccine candidates, particularly for the FluB-RAM/IGIP compared with the non-IGIP FluB-RAM counterpart. In a prime-boost regime, mice were completely protected against lethal challenge with a homologous FLUBV strain. Recombinant viruses induced antibodies against HA considered of protective value. Antibodies against NA and NP were readily detected. Compared to male mice and regardless of the vaccine used, female mice showed a clear trend towards enhanced humoral and cross-reactive IgG and IgA anti-HA responses as well as against NA and NP. The presence of IGIP in the vaccine resulted in an overall trend towards reduced anti-HA responses but enhanced anti-NA and anti-NP responses, particularly of the IgA isotype. Mucosal and serological responses two weeks after challenge showed similar trends with clear differences observed based on sex, vaccine backbone, and whether the vaccine carried the IGIP modification. These findings are significant for the development of universal influenza vaccines.
Project description:Influenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics as well as from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called “universal” influenza vaccines, do not currently exist, but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets. The vaccine is comprised of four beta-propiolactone-inactivated low pathogenicity avian influenza A virus subtypes of H1N9, H3N8, H5N1, or H7N3. Vaccinated mice and ferrets demonstrated substantial protection against a variety of IAVs, including the 1918 H1N1 strain, the highly pathogenic avian H5N8 strain, and H7N9. We also observed protection against challenge with antigenically variable and heterosubtypic avian, swine, and human viruses. Compared to mock vaccinated animals, vaccinated mice and ferrets demonstrated marked reductions in viral titers, lung pathology, and host inflammatory responses. This vaccine approach indicates the feasibility of eliciting broad, heterosubtypic IAV protection and identifies a promising candidate for influenza vaccine clinical development.
Project description:Influenza A viruses (IAVs) present major public health threats from annual seasonal epidemics and pandemics as well as from viruses adapted to a variety of animals including poultry, pigs, and horses. Vaccines that broadly protect against all such IAVs, so-called “universal” influenza vaccines, do not currently exist, but are urgently needed. Here, we demonstrated that an inactivated, multivalent whole virus vaccine, delivered intramuscularly or intranasally, was broadly protective against challenges with multiple IAV hemagglutinin and neuraminidase subtypes in both mice and ferrets. The vaccine is comprised of four beta-propiolactone-inactivated low pathogenicity avian influenza A virus subtypes of H1N9, H3N8, H5N1, or H7N3. Vaccinated mice and ferrets demonstrated substantial protection against a variety of IAVs, including the 1918 H1N1 strain, the highly pathogenic avian H5N8 strain, and H7N9. We also observed protection against challenge with antigenically variable and heterosubtypic avian, swine, and human viruses. Compared to mock vaccinated animals, vaccinated mice and ferrets demonstrated marked reductions in viral titers, lung pathology, and host inflammatory responses. This vaccine approach indicates the feasibility of eliciting broad, heterosubtypic IAV protection and identifies a promising candidate for influenza vaccine clinical development.
Project description:Mice were immunized with either formalin fixed Influenza A/PR/8/34 (Killed PR8), the 2006-2007 seasonal influenza vaccine, the 2007-2008 seasonal influenza vaccine, a sublethal infection (live PR8) or mock immunized (PBS). Array data was used to distinguish the immunogens from each other and predict which of the three inactivated vaccines would be protective against A/PR/8/34 challenge.
Project description:This is an ordinary differential equation mathematical model investigating the early responses of human monocyte-derived dendritic cells to infection by two H1N1 influenza A viruses of different clinical outcomes: pandemic A/California/4/2009 and seasonal A/New Caledonia/20/1999.
Project description:Pandemic influenza H1N1 (pdmH1N1) virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses, suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However, a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus.
Project description:Pandemic influenza H1N1 (pdmH1N1) virus causes mild disease in humans but occasionally leads to severe complications and even death, especially in those who are pregnant or have underlying disease. Cytokine responses induced by pdmH1N1 viruses in vitro are comparable to other seasonal influenza viruses, suggesting the cytokine dysregulation as seen in H5N1 infection is not a feature of the pdmH1N1 virus. However, a comprehensive gene expression profile of pdmH1N1 in relevant primary human cells in vitro has not been reported. Type I alveolar epithelial cells are a key target cell in pdmH1N1 pneumonia. We carried out a comprehensive gene expression profiling using the Affymetrix microarray platform to compare the transcriptomes of primary human alveolar type I-like alveolar epithelial cells infected with pdmH1N1 or seasonal H1N1 virus. Primary type II alveolar epithelial cells were isolated from human non-malignant lung tissue of three patients who underwent lung resection, and cells were differentiated to type I-like before use. Type I-like alveolar epithelial cells were mock infected, or infected with pdmH1N1 or seasonal H1N1 viruses at a multiplicity of infection (MOI) of two. Total RNA was extracted from cells after 8h post-infection, and gene expression profiling was performed using an Affymetrix Human Gene 1.0 ST microarray platform.
Project description:Fribourg2014 - Dynamics of viral antagonism and innate immune response (H1N1 influenza A virus - NC/99)
The dynamics of the interplay between the viral antagonism and the innate immune response has been studied using modelling approaches. The responses of human monocyte-derived dendritic cells infected by two influenza A H1N1 strains (the pandemic swine-origin A/California/4/2009 (Cal/09) and the seasonal A/New Caledonia/20/1999 (NC/99)) that have different clinical outcomes have been modelled. From the time course gene expression measurements of a set of selected genes, the dynamic features of viral antagonism and innate immune response are extracted. It is found that the strength and the time scale of action of viral antagonism is significantly different between the two viruses. This model describes the viral infection by seasonal NC/99.
This model is described in the article:
Model of influenza A virus infection: Dynamics of viral antagonism and innate immune response.
Fribourg M, Hartmann B, Schmolke M, Marjanovic N, Albrecht RA, García-Sastre A, Sealfon SC, Jayaprakash C, Hayot F.
J Theor Biol. 2014 Mar 2;351C:47-57.
Abstract:
Viral antagonism of host responses is an essential component of virus pathogenicity. The study of the interplay between immune response and viral antagonism is challenging due to the involvement of many processes acting at multiple time scales. Here we develop an ordinary differential equation model to investigate the early, experimentally measured, responses of human monocyte-derived dendritic cells to infection by two H1N1 influenza A viruses of different clinical outcomes: pandemic A/California/4/2009 and seasonal A/New Caledonia/20/1999. Our results reveal how the strength of virus antagonism, and the time scale over which it acts to thwart the innate immune response, differs significantly between the two viruses, as is made clear by their impact on the temporal behavior of a number of measured genes. The model thus sheds light on the mechanisms that underlie the variability of innate immune responses to different H1N1 viruses.
This model is hosted on BioModels Database and identified
by: MODEL1403310001.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication for more information.