Project description:Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single strand DNA (ssDNA) in BRCA1-deficient cells leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the (CTC1-STN1-TEN1) CST and DNA polymerase alpha (Polα) to counteract resection. We present evidence here that 53BP1-mediated exonuclease protection plays a more significant role than CST/Polα synthesis in countering hyper-resection at DSBs in G1 phase. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at AsiSI-induced DSBs. We show that in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, Exo1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, 53BP1 inhibits resection mainly through end-protection rather than by promoting fill-in.
Project description:Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single strand DNA (ssDNA) in BRCA1-deficient cells leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the (CTC1-STN1-TEN1) CST and DNA polymerase alpha (Polα) to counteract resection. We present evidence here that 53BP1-mediated exonuclease protection plays a more significant role than CST/Polα synthesis in countering hyper-resection at DSBs in G1 phase. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at AsiSI-induced DSBs. We show that in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, Exo1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, 53BP1 inhibits resection mainly through end-protection rather than by promoting fill-in.
Project description:Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single strand DNA (ssDNA) in BRCA1-deficient cells leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the (CTC1-STN1-TEN1) CST and DNA polymerase alpha (Polα) to counteract resection. We present evidence here that 53BP1-mediated exonuclease protection plays a more significant role than CST/Polα synthesis in countering hyper-resection at DSBs in G1 phase. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at AsiSI-induced DSBs. We show that in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, Exo1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, 53BP1 inhibits resection mainly through end-protection rather than by promoting fill-in.
Project description:Nuclear architecture plays a significant role in DNA repair mechanisms. It is evident that proteins involved in DNA repair are compartmentalized in not only spontaneously occurring DNA lesions or ionizing radiation-induced foci (IRIF), but a specific clustering of these proteins can also be observed within the whole cell nucleus. For example, 53BP1-positive and BRCA1-positive DNA repair foci decorate chromocenters and can appear close to nuclear speckles. Both 53BP1 and BRCA1 are well-described factors that play an essential role in double-strand break (DSB) repair. These proteins are members of two protein complexes: 53BP1-RIF1-PTIP and BRCA1-CtIP, which make a "decision" determining whether canonical nonhomologous end joining (NHEJ) or homology-directed repair (HDR) is activated. It is generally accepted that 53BP1 mediates the NHEJ mechanism, while HDR is activated via a BRCA1-dependent signaling pathway. Interestingly, the 53BP1 protein appears relatively quickly at DSB sites, while BRCA1 is functional at later stages of DNA repair, as soon as the Mre11-Rad50-Nbs1 complex is recruited to the DNA lesions. A function of the 53BP1 protein is also linked to a specific histone signature, including phosphorylation of histone H2AX (γH2AX) or methylation of histone H4 at the lysine 20 position (H4K20me); therefore, we also discuss an epigenetic landscape of 53BP1-positive DNA lesions.