Other

Dataset Information

0

Comprehensive profiling of activity and specificity of CRISPR/Cas9 under cellular environment by deep learning


ABSTRACT: This study aims to predict the activity and specificity of CRISPR/Cas9 by deep learning at genome-scale among different cell lines. Here, we have focused on embracing and modifying a system for evaluating SpCas9 activity of on-target and off-target using >1,000,000 guide RNAs (gRNAs) covering ~20,000 protein-coding genes and ~10,000 non-coding genes in synthetic constructs with a high-throughput manner. With the help of deep learning algorithms in the field of artificial intelligence, three prediction models with the best generalization performance now are constructed: Aidit_Cas9-ON, Aidit_Cas9-OFF, and Aidit_Cas9-DSB. Moreover, through systematically investigating the influence of diverse cellular environment on gRNA activity and specificity, we noticed that distinct features are favored from H1 cell line compared with the other 2 cell lines for on-target activity and the overall distribution of repair outcomes is markedly different across 3 cell lines, especially in Jurkat. Finally, we identify a key effect protein DNTT strongly influences editing outcomes induced by CRISPR/Cas9. We confirm that this study will greatly facilitate CRISPR-based genome editing.

ORGANISM(S): Homo sapiens

PROVIDER: GSE181774 | GEO | 2023/05/24

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-08-22 | GSE231840 | GEO
2023-06-16 | E-MTAB-13009 | biostudies-arrayexpress
2014-08-29 | E-GEOD-57650 | biostudies-arrayexpress
2022-04-21 | GSE200943 | GEO
| PRJNA968010 | ENA
2016-07-29 | E-GEOD-84534 | biostudies-arrayexpress
| PRJNA753457 | ENA
2022-09-24 | E-MTAB-11779 | biostudies-arrayexpress
2022-03-05 | E-MTAB-11470 | biostudies-arrayexpress
2015-03-04 | E-GEOD-61099 | biostudies-arrayexpress