Effects of body condition loss in lactating dairy cows on serum lipid profiles and the oocyte transcriptome
Ontology highlight
ABSTRACT: The purpose of this data set was to examine the effects of excess body condition (BC) loss in dairy cattle during lactation on oocyte and cumulus cell transcriptomes. Cells were collected from dairy cattle that lost BC (L group) or maintained/gained BC (M/G group) during the first 30 days in milk (DIM).
Project description:This article contains raw and processed data related to research published by Swartz et al. [1]. Proteomics data from liver of postpartum dairy cows were obtained by liquid chromatography-mass spectrometry following protein extraction. Differential abundance between liver of cows experiencing either negative energy balance (NEB, n=6) or positive energy balance (PEB, n=4) at 17±3 DIM was quantified using MS1 intensity based label-free. There is a paucity of studies examining the associations of NEB with the liver proteome in early lactation dairy cows. Therefore, our objective was to characterize the differences in the liver proteome in periparturient dairy cows experiencing naturally occurring NEB compared to cows in PEB. In this study, multiparous Holstein dairy cows were milked either 2 or 3 times daily for the first 30 days in milk (DIM) to alter energy balance, and were classified retrospectively as NEB (n=18) or PEB (n=22). Liver biopsies were collected from 10 cows (n=5 from each milking frequency), that were retrospectively classified according to their energy balance (NEB, n=6; PEB, n=4). The liver proteome was characterized using label-free quantitative shotgun proteomics. This novel dataset contains 2,741 proteins were identified, and 68 of those were differentially abundant between NEB and PEB (P≤0.05 and FC±1.5); these findings are discussed in our recent research article [1]. The present dataset of liver proteome can be used as either biological markers for disease or therapeutic targets to improve metabolic adaptations to lactation in postpartum dairy cattle.
Project description:Heat stress (HS) has become a major challenge in the dairy industry around the world. Although numerous measures have been taken to alleviate the HS impact on milk production, the cellular level response to HS remains unclear in dairy cows. The objective of this study was to dissect functional alterations based on transcriptomic dynamics in the liver of cows under HS. Dairy cows exposed to HS exhibited both decreased feed intake and milk yield. Through liver transcriptomic analysis, differentially expressed genes were identified among three experimental conditions, including heat stress (HS), pair-fed (PF), and thermoneutral (TN) groups. We observed the upregulation of protein folding and inflammation-related genes in the HS group, while the mitochondrial genes were downregulated. Gene functional enrichment also revealed that mitochondria function and oxidative phosphorylation were dysregulated under HS. The liver transcriptome analysis generated a comprehensive gene expression regulation network upon HS in lactating dairy cows. Overall, this study provides novel insights into molecular and metabolic changes of cows conditioned under HS. Our results could facilitate the development of efficient biomarkers to mitigate the negative effect of HS on dairy cow health and productivity.
Project description:In dairy cows, administration of high dosages of niacin (NA) was found to cause anti-lipolytic effects, which are mediated by the NA receptor hydroxyl-carboxylic acid receptor 2 (HCAR2) in white adipose tissue (WAT), and thereby to an altered hepatic lipid metabolism. However, almost no attention has been paid to possible direct effects of NA in cattle liver, despite showing that HCAR2 is expressed also in the liver of cattle and is even more abundant than in WAT. Due to this, we hypothesized that feeding of rumen-protected NA to dairy cows influences critical metabolic and/or signaling pathways in the liver through inducing changes in the hepatic transcriptome. In order to identify these pathways, we applied genome-wide transcript profiling in liver biopsies obtained at 1 wk postpartum (p.p.) from dairy cows of a recent study (Zeitz et al., 2018) which were fed a total mixed ration without (control group) or with rumen-protected NA from 21 d before calving until 3 wk p.p. Hepatic transcript profiling revealed that a total of 487 transcripts were differentially expressed [filter criteria fold change (FC) > 1.2 or FC < -1.2 and P < 0.05] in the liver at 1 wk p.p. between cows fed NA and control cows. Substantially more transcripts were down-regulated (n = 338), while only 149 transcripts were up-regulated by NA in the liver of cows. Gene set enrichment analysis (GSEA) for the up-regulated transcripts revealed that the most enriched gene ontology (GO) biological process terms were exclusively related to immune processes, such as leukocyte differentiation, immune system process, leukocyte differentiation, activation of immune response and acute inflammatory response. In line with this, the plasma concentration of the acute phase protein haptoglobin tended to be increased in dairy cows fed rumen-protected NA compared to control cows (P < 0.1). GSEA of the down-regulated transcripts showed that the most enriched biological process terms were related to metabolic processes, such as cellular metabolic process, small molecule metabolic process, lipid catabolic process, organic cyclic compound metabolic process, small molecule biosynthetic process and cellular lipid catabolic process. In conclusion, hepatic transcriptome analysis shows that rumen-protected NA induces genes which are involved mainly in immune processes including acute phase response and stress response in dairy cows at wk 1 p.p. These findings indicate that supplementation of rumen-protected NA to dairy cows in the periparturient period may induce or amplify the systemic inflammation-like condition which is typically observed in the liver of high-yielding dairy cows in the p.p. period.
Project description:In this study, samples of 16 dairy cows from a MAP infected farm were used. Serum, milk and fecal samples were collected. Categorizing these cows into two groups based on their MAP infection status different standard methods for detection MAP were applied. Healthy controls showed no positive results in enzyme-linked immunosorbent assay (ELISA) with serum and milk samples (cattletype MAP Ab, Qiagen, Hilden, Germany; In-direct, IDVet, Grabels, France) and after cultivation of fecal samples on commercial Her-rold´s Egg Yolk Agars (HEYM agar, Becton Dickinson, Heidelberg, Germany) for 12 weeks. Cows with positive results were grouped into MAP infected cows. Specifically, for mass spectrometry analysis serum of seven MAP infected cows and seven healthy controls were used. All animals were from the same farm and were kept under the same environmental conditions. For additional mass spectrometry analysis with a further control group sam-ples of 21 dairy cows from an uninfected farm were examined. All cattle from this farm showed negative results in ELISA with serum and milk samples. Additionally, there was never a positive result in regularly tested fecal samples and sock swab samples of this farm. For verification of differential CTSS expression in Western blot analysis five dairy cows from another infected farm were consultedincluded. MAP status of these cows was analyzed by cultivation of fecal samples on HEYM agar for 12 weeks and ELISA with se-rum samples. In detail, two cattle were categorized into healthy controls and three cattle into MAP infected cows. Withdrawal of bovine venous whole blood and experi-mental protocols were approved by the local authority, Government of Upper Bavaria, permit no. ROB-55.2-2532.Vet_03-17-106.
Project description:Background: The liver is central to most economically important metabolic processes in cattle. However, the changes in expression of genes that drive these processes remain incompletely characterised. RNA-seq is the new gold standard for whole transcriptome analysis but so far there are no reports of its application to analysis of differential gene expression in cattle liver. We used RNA-seq to study differences in expression profiles of hepatic genes and their associated pathways in individual cattle in either mild negative energy balance (MNEB) or severe negative energy balance (SNEB). NEB is an imbalance between energy intake and energy requirements for lactation and body maintenance. This aberrant metabolic state affects high-yielding dairy cows after calving and is of considerable economic importance because of its negative impact on fertility and health in dairy herds. Analysis of changes in hepatic gene expression in SNEB animals will increase our understanding of NEB and contribute to the development of strategies to circumvent it. Results: RNA-seq analysis was carried out on total RNA from liver from early post partum Holstein Friesian cows in MNEB (n=5) and SNEB (n=6). 12,833 genes were deemed to be expressed (>4 reads per gene per animal), 413 of which were shown to be statistically significantly differentially expressed (SDE) at a false discovery rate (FDR) of 0.1% and 200 of which were SDE (FDR of 0.1%) with a ≥2-fold change between MNEB and SNEB animals. GOseq/KEGG pathway analysis showed that SDE genes with ≥2- fold change were associated (P <0.05) with 9 KEGG pathways. Seven of these pathways were related to fatty acid metabolism and unexpectedly included ‘Steroid hormone biosynthesis’, a process which mainly occurs in the reproductive organs rather than the liver. Conclusions: RNA-seq analysis showed that the major changes at the level of transcription in the liver of SNEB cows were related to fat metabolism. 'Steroid hormone biosynthesis', a process that normally occurs in reproductive tissue, was significantly associated with changes in gene expression in the liver of SNEB cows. Changes in gene expression were found in this pathway that have not been previously been identified in SNEB cows.
Project description:Background: The liver is central to most economically important metabolic processes in cattle. However, the changes in expression of genes that drive these processes remain incompletely characterised. RNA-seq is the new gold standard for whole transcriptome analysis but so far there are no reports of its application to analysis of differential gene expression in cattle liver. We used RNA-seq to study differences in expression profiles of hepatic genes and their associated pathways in individual cattle in either mild negative energy balance (MNEB) or severe negative energy balance (SNEB). NEB is an imbalance between energy intake and energy requirements for lactation and body maintenance. This aberrant metabolic state affects high-yielding dairy cows after calving and is of considerable economic importance because of its negative impact on fertility and health in dairy herds. Analysis of changes in hepatic gene expression in SNEB animals will increase our understanding of NEB and contribute to the development of strategies to circumvent it. Results: RNA-seq analysis was carried out on total RNA from liver from early post partum Holstein Friesian cows in MNEB (n=5) and SNEB (n=6). 12,833 genes were deemed to be expressed (>4 reads per gene per animal), 413 of which were shown to be statistically significantly differentially expressed (SDE) at a false discovery rate (FDR) of 0.1% and 200 of which were SDE (FDR of 0.1%) with a ≥2-fold change between MNEB and SNEB animals. GOseq/KEGG pathway analysis showed that SDE genes with ≥2- fold change were associated (P <0.05) with 9 KEGG pathways. Seven of these pathways were related to fatty acid metabolism and unexpectedly included ‘Steroid hormone biosynthesis’, a process which mainly occurs in the reproductive organs rather than the liver. Conclusions: RNA-seq analysis showed that the major changes at the level of transcription in the liver of SNEB cows were related to fat metabolism. 'Steroid hormone biosynthesis', a process that normally occurs in reproductive tissue, was significantly associated with changes in gene expression in the liver of SNEB cows. Changes in gene expression were found in this pathway that have not been previously been identified in SNEB cows. 11 liver RNA samples were analysed in total, 6 samples were from SNEB animals and 5 samples from MNEB animals
Project description:The transition period is the most critical stage in the lactation cycle of dairy cattle. During this period, cows are subjected to high levels of oxidative stress. One way of managing this stress is through mineral supplementation with antioxidant micronutrients. The aim of this study was to evaluate the gene expression of transition dairy cows supplemented with the antioxidant trace elements copper (Cu), zinc (Zn), manganese (Mn) and selenium (Se). The study was carried out in a commercial Holstein dairy farm located in General Belgrano, province of Buenos Aires, Argentina. Cows (n=200) were randomly assigned to either a supplemented or a control group. Blood samples were obtained seven days after calving and used to determine superoxide dismutase and glutathione peroxidase activity, antioxidant capacity and thiobarbituric acid reactive substances. Additionally, RNA-sequencing analysis was performed. The oxidative stress index differed significantly between groups, despite only two differentially expressed genes which codify for second messengers (adjusted p value < 0.05). This would suggest that trace mineral supplementation of transition dairy cows would not induce changes in gene expression profiles in pathways associated with oxidative stress and immune function, since their expression is already high in response to the high oxidative stress levels and the dietary changes associated with this period. Nevertheless, considering the role of these minerals as cofactors, a higher availability in the supplemented group would increase antioxidant enzyme activity.
Project description:M. Berg, J. Plöntzke, S. Leonhard-Marek, K.E. Müller & S. Röblitz. A dynamic model to simulate potassium balance in dairy cows. Journal of Dairy Science 100, 12 (2017).
High-performing dairy cows require a particular composition of nutritional ingredients, adapted to their individual requirements and depending on their production status. The optimal dimensioning of minerals in the diet, one being potassium, is indispensable for the prevention of imbalances. Potassium balance in cows is the result of potassium intake, distribution in the organism, and excretion, and it is closely related to glucose and electrolyte metabolism. In this paper, we present a dynamical model for potassium balance in lactating and nonlactating dairy cows based on ordinary differential equations. Parameter values were obtained from clinical trial data and from the literature. To verify the consistency of the model, we present simulation outcomes for 3 different scenarios: potassium balance in (1) nonlactating cows with varying feed intake, (2) nonlactating cows with varying potassium fraction in the diet, and (3) lactating cows with varying milk production levels. The results give insights into the short- and long-term potassium metabolism, providing an important step toward the understanding of the potassium network, the design of prophylactic feed additives, and possible treatment strategies.