Porin-mediated passage of negamycin across the outer membrane of Escherichia coli
Ontology highlight
ABSTRACT: The rise of antimicrobial resistant pathogens calls for new antibacterial treatments, but potent new compounds are scarce. Development of new antibiotics is difficult, especially against Gram-negative bacteria, as here uptake is strongly hindered by the additional outer membrane. Most antimicrobial agents against Gram-negatives use the porin mediated pathway to cross the outer membrane, which limits the choice of an antibiotic, as it has to fit by size, charge and hydrophilicity. In E. coli, the major porins OmpF and OmpC are associated with antibiotic translocation and therefore also with unspecific antibiotic cross-resistance. In this regard, alternative uptake routes are of interest. We were interested in the uptake opportunities of the small, natural product antibiotic negamycin and thereby found new uptake pathways across the outer membrane of E. coli. Besides OmpF and OmpC, we investigated the role of the minor porins OmpN and ChiP in negamycin translocation. We detected an effect of OmpN and ChiP on negamycin susceptibility and confirmed passage by electrophysiological assays. The structure of OmpN was resolved in order to analyze the negamycin translocation mechanism by computational simulations. As abundancy of these minor porins was low in E. coli, their transcript levels were analyzed by RNA-Seq. Increased transcripts levels of ompN and chiP were observed upon negamycin treatment, hinting at a role in antibiotic uptake. These new, additional uptake pathways across the outer membrane of E. coli highlight the antibiotic potential of negamycin, especially as resistance development is low due to availability of multiple uptake routes at both the outer and inner membranes
ORGANISM(S): Escherichia coli
PROVIDER: GSE183363 | GEO | 2023/10/01
REPOSITORIES: GEO
ACCESS DATA