Project description:This SuperSeries is composed of the following subset Series: GSE18509: miR-193b represses cell proliferation and regulates cyclin D1 in melanoma: benign nevi and metastatic melanoma GSE18510: miR-193b represses cell proliferation and regulates cyclin D1 in melanoma: Malme-3M Refer to individual Series
Project description:Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.
Project description:Cutaneous melanoma is an increasingly common form of skin cancer. The molecular mechanisms regulating melanoma progression are not completely understood. We speculated that specific miRNAs may be involved in melanoma development. We compared the miRNA expression profiles of benign nevi and metastatic melanomas. Unsupervised hierarchical clustering demonstrated a distinct miRNA expression pattern in metastatic melanomas compared to nevi. We identified miRNAs that were differentially expressed in melanoma. Notably, miR-193b was significantly down-regulated in the melanoma tissue examined. Using functional studies we demonstrated that over-expression of miR-193b significantly reduced melanoma cell proliferation, and arrested cell at G1 phase. Further gene expression analysis revealed that miR-193b regulated targets involved in cell cycle. Cyclin D1 was down-regulated by miR-193b at both the mRNA and protein level. This is the first study to show that the miR-193b may reduce cell proliferation by directly repressing cyclin D1. Overall, our study suggests that miRNAs are dysregulated in metastatic melanoma, and that miR-193b may play an important role in melanoma. 8 benign nevi and 8 metastatic melanoma tissue samples were profiled by Agilent MicroRNA Microarray (V1.5).
Project description:Cutaneous melanoma is an increasingly common form of skin cancer. The molecular mechanisms regulating melanoma progression are not completely understood. We speculated that specific miRNAs may be involved in melanoma development. We compared the miRNA expression profiles of benign nevi and metastatic melanomas. Unsupervised hierarchical clustering demonstrated a distinct miRNA expression pattern in metastatic melanomas compared to nevi. We identified miRNAs that were differentially expressed in melanoma. Notably, miR-193b was significantly down-regulated in the melanoma tissue examined. Using functional studies we demonstrated that over-expression of miR-193b significantly reduced melanoma cell proliferation, and arrested cell at G1 phase. Further gene expression analysis revealed that miR-193b regulated targets involved in cell cycle. Cyclin D1 was down-regulated by miR-193b at both the mRNA and protein level. This is the first study to show that the miR-193b may reduce cell proliferation by directly repressing cyclin D1. Overall, our study suggests that miRNAs are dysregulated in metastatic melanoma, and that miR-193b may play an important role in melanoma.
Project description:Cutaneous melanoma is an increasingly common form of skin cancer. The molecular mechanisms regulating melanoma progression are not completely understood. We speculated that specific miRNAs may be involved in melanoma development. We compared the miRNA expression profiles of benign nevi and metastatic melanomas. Unsupervised hierarchical clustering demonstrated a distinct miRNA expression pattern in metastatic melanomas compared to nevi. We identified miRNAs that were differentially expressed in melanoma. Notably, miR-193b was significantly down-regulated in the melanoma tissue examined. Using functional studies we demonstrated that over-expression of miR-193b significantly reduced melanoma cell proliferation, and arrested cell at G1 phase. Further gene expression analysis revealed that miR-193b regulated targets involved in cell cycle. Cyclin D1 was down-regulated by miR-193b at both the mRNA and protein level. This is the first study to show that the miR-193b may reduce cell proliferation by directly repressing cyclin D1. Overall, our study suggests that miRNAs are dysregulated in metastatic melanoma, and that miR-193b may play an important role in melanoma. 8 benign nevi and 8 metastatic melanoma tissue samples were profiled by Agilent MicroRNA Microarray (V1.5).
Project description:Cutaneous melanoma is an increasingly common form of skin cancer. The molecular mechanisms regulating melanoma progression are not completely understood. We speculated that specific miRNAs may be involved in melanoma development. We compared the miRNA expression profiles of benign nevi and metastatic melanomas. Unsupervised hierarchical clustering demonstrated a distinct miRNA expression pattern in metastatic melanomas compared to nevi. We identified miRNAs that were differentially expressed in melanoma. Notably, miR-193b was significantly down-regulated in the melanoma tissue examined. Using functional studies we demonstrated that over-expression of miR-193b significantly reduced melanoma cell proliferation, and arrested cell at G1 phase. Further gene expression analysis revealed that miR-193b regulated targets involved in cell cycle. Cyclin D1 was down-regulated by miR-193b at both the mRNA and protein level. This is the first study to show that the miR-193b may reduce cell proliferation by directly repressing cyclin D1. Overall, our study suggests that miRNAs are dysregulated in metastatic melanoma, and that miR-193b may play an important role in melanoma.
Project description:Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b targets cyclin D1 in prostate cancer. Our data show that miR-193b is commonly methylated in PC samples compared to benign prostate hyperplasia. We found reduced miR-193b expression (P < 0.05) in stage pT3 tumors compared to pT2 tumors in a cohort of prostatectomy specimens. In 22Rv1 PC cells with low endogenous miR-193b expression, the overexpression of miR-193b reduced CCND1 mRNA levels and cyclin D1 protein levels. In addition, the exogenous expression of miR-193b decreased the phosphorylation level of RB, a target of the cyclin D1-CDK4/6 pathway. Moreover, according to a reporter assay, miR-193b targeted the 3'UTR of CCND1 in PC cells and the CCND1 activity was rescued by expressing CCND1 lacking its 3'UTR. Immunohistochemical analysis of cyclin D1 showed that castration-resistant prostate cancers have significantly (P = 0.0237) higher expression of cyclin D1 compared to hormone-naïve cases. Furthermore, the PC cell lines 22Rv1 and VCaP, which express low levels of miR-193b and high levels of CCND1, showed significant growth retardation when treated with a CDK4/6 inhibitor. In contrast, the inhibitor had no effect on the growth of PC-3 and DU145 cells with high miR-193b and low CCND1 expression. Taken together, our data demonstrate that miR-193b targets cyclin D1 in prostate cancer.
Project description:Meningiomas are common intracranial tumors in adults. Abnormal microRNA (miRNA) expression plays a role in their pathogenesis. Change in miRNA expression level can be caused by impaired epigenetic regulation of miRNA-encoding genes. We found the genomic region covering the MIR193B gene to be DNA hypermethylated in meningiomas based on analysis of genome-wide methylation (HumanMethylation450K Illumina arrays). Hypermethylation of MIR193B was also confirmed via bisulfite pyrosequencing. Both hsa-miR-193b-3p and hsa-miR-193b-5p are downregulated in meningiomas. Lower expression of hsa-miR-193b-3p and higher MIR193B methylation was observed in World Health Organization (WHO) grade (G) II/III tumors as compared to GI meningiomas. CCND1 mRNA was identified as a target of hsa-miR-193b-3p as further validated using luciferase reporter assay in IOMM-Lee meningioma cells. IOMM-Lee cells transfected with hsa-miR-193b-3p mimic showed a decreased cyclin D1 level and lower cell viability and proliferation, confirming the suppressive nature of this miRNA. Cyclin D1 protein expression (immunoreactivity) was higher in atypical than in benign meningiomas, accordingly to observations of lower hsa-miR-193b-3p levels in GII tumors. The commonly observed hypermethylation of MIR193B in meningiomas apparently contributes to the downregulation of hsa-miR-193b-3p. Since hsa-miR-193b-3p regulates proliferation of meningioma cells through negative regulation of cyclin D1 expression, it seems to be an important tumor suppressor in meningiomas.
Project description:MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737-resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3' untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression.
Project description:MicroRNAs (miRNAs) have important roles in gene regulation. Dysregulation of miRNAs has been associated with tumorigenesis. Recent studies suggest miR-193b is a tumor suppressor gene. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 (CCND1) in melanoma. Now we demonstrate that miR-193b regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. miRNA microarray profiling revealed the miR-193b level in malignant melanomas was significantly downregulated compared to benign nevi, while a tissue microarray demonstrated overexpression of Mcl-1 in malignant melanoma. The Mcl-1 expressions were inversely correlated with the miR-193b levels in melanoma tissue samples, suggesting a potential regulatory role of miR-193b. Overexpression of miR-193b repressed Mcl-1 in melanoma cell lines. It is well known that Mcl-1 knockdown confers cell sensitivity to ABT-737, a small molecular inhibitor of Bcl-2, Bcl-XL and Bcl-w. We found miR-193b, through repressing Mcl-1 expression, could also sensitize melanoma cells that were refractory to ABT-737. Furthermore, miR-193b directly regulates Mcl-1 by targeting the 3’ untranslated region (3’UTR) of Mcl-1 mRNA. Interestingly, miR-193b may recognize sequences on the 3’UTR that do not base pair with its seed region. In conclusion, our study suggests the downregulation of miR-193b could be an early event during melanoma progression, and demonstrates miR-193b directly regulates Mcl-1 by targeting both seed and seedless sequences of the 3’ UTR. 15 primary melanoma samples, 8 metastatic melanomas and 8 benign nevi samples were profiled on Agilent miRNA array platform