Morphological diversification and functional maturation of human astrocytes in glia-enriched cortical organoids transplanted in the mouse brain
Ontology highlight
ABSTRACT: Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here, we introduce a novel glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled rapid derivation of astroglial cells, which account for 25-31% of the cell population within eight to ten weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within the organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates proinflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling plays a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.
ORGANISM(S): Homo sapiens
PROVIDER: GSE185472 | GEO | 2024/01/16
REPOSITORIES: GEO
ACCESS DATA