Reorganization of postmitotic neuronal chromatin accessibility for maturation of serotonergic identity
Ontology highlight
ABSTRACT: Assembly of transcriptomes encoding unique neuronal identities requires selective accessibility of transcription factors to cis-regulatory sequences in nucleosome-embedded postmitotic chromatin. Yet, the mechanisms controlling postmitotic neuronal chromatin accessibility are poorly understood. Here, we show that unique distal enhancers define the Pet1 neuron lineage that generates serotonin (5-HT) neurons. Heterogeneous single cell chromatin landscapes are established early in postmitotic Pet1 neurons and reveal the putative regulatory programs driving Pet1 neuron subtype identities. Distal enhancer accessibility is highly dynamic as Pet1 neurons mature, suggesting the existence of regulatory factors that reorganize postmitotic neuronal chromatin. We find that Pet1 and Lmx1b control chromatin accessibility to select Pet1-lineage specific enhancers for 5-HT neurotransmission. Additionally, these factors are required to maintain chromatin accessibility during early maturation suggesting that postmitotic neuronal open chromatin is unstable and requires continuous regulatory input. Together our findings reveal postmitotic transcription factors that reorganize accessible chromatin for neuron specialization.
Project description:Newborn neurons enter an extended maturation stage, during which they acquire excitability characteristics crucial for development of presynaptic and postsynaptic connectivity. In contrast to earlier specification programs, little is known aboutthe regulatory mechanisms that control neuronal maturation. The Pet-1 ETS (E26 transformation-specific) factor is continuously expressed in serotonin (5-HT) neurons and initially acts in postmitotic precursors to control acquisition of 5-HT transmitter identity. Using a combination of RNA sequencing, electrophysiology, and conditional targeting approaches, we determined gene expression patterns in maturing flow-sorted 5-HT neurons and the temporal requirements for Pet-1 in shaping these patterns for functional maturation of mouse 5-HT neurons. We report a profound disruption of postmitotic expression trajectories in Pet-1 / neurons, which prevented postnatal maturation of 5-HT neuron passive and active intrinsic membrane properties, G-protein signaling, and synaptic responses to glutamatergic, lysophosphatidic, and adrenergic agonists. Unexpectedly, conditional targeting revealed a postnatal stage-specific switch in Pet-1 targets from 5-HT synthesis genes to transmitter receptor genes required for afferent modulation of 5-HT neuron excitability. 5-HT1a autoreceptor expression depended transiently on Pet-1, thus revealing an early postnatal sensitive period for control of 5-HT excitability genes. Chromatin immunoprecipitation followed by sequencing revealed that Pet-1 regulates 5-HT neuron maturation through direct gene activation and repression. Moreover, Pet-1 directly regulates the 5-HT neuron maturation factor Engrailed 1, which suggests Pet-1 orchestrates maturationthrough secondary postmitotic regulatoryfactors. The early postnatal switch in Pet-1targets uncovers a distinct neonatal stage-specific function for Pet-1, during which it promotes maturation of 5-HT neuron excitability. 5-HT neuron mRNA profiles of E11.5, E15.5, and postnatal (P1-P3) wild type (WT) and Pet-1-/- mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 2500. Myc-tagged Pet-1 ChIP-seq was performed on E12.5 to E14.5 hindbrains and sequencing using NextSeq 500.
Project description:Newborn neurons enter an extended maturation stage, during which they acquire excitability characteristics crucial for development of presynaptic and postsynaptic connectivity. In contrast to earlier specification programs, little is known aboutthe regulatory mechanisms that control neuronal maturation. The Pet-1 ETS (E26 transformation-specific) factor is continuously expressed in serotonin (5-HT) neurons and initially acts in postmitotic precursors to control acquisition of 5-HT transmitter identity. Using a combination of RNA sequencing, electrophysiology, and conditional targeting approaches, we determined gene expression patterns in maturing flow-sorted 5-HT neurons and the temporal requirements for Pet-1 in shaping these patterns for functional maturation of mouse 5-HT neurons. We report a profound disruption of postmitotic expression trajectories in Pet-1 / neurons, which prevented postnatal maturation of 5-HT neuron passive and active intrinsic membrane properties, G-protein signaling, and synaptic responses to glutamatergic, lysophosphatidic, and adrenergic agonists. Unexpectedly, conditional targeting revealed a postnatal stage-specific switch in Pet-1 targets from 5-HT synthesis genes to transmitter receptor genes required for afferent modulation of 5-HT neuron excitability. 5-HT1a autoreceptor expression depended transiently on Pet-1, thus revealing an early postnatal sensitive period for control of 5-HT excitability genes. Chromatin immunoprecipitation followed by sequencing revealed that Pet-1 regulates 5-HT neuron maturation through direct gene activation and repression. Moreover, Pet-1 directly regulates the 5-HT neuron maturation factor Engrailed 1, which suggests Pet-1 orchestrates maturationthrough secondary postmitotic regulatoryfactors. The early postnatal switch in Pet-1targets uncovers a distinct neonatal stage-specific function for Pet-1, during which it promotes maturation of 5-HT neuron excitability.
Project description:Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic serotonin (5-HT) neuron development; over two hundred pathogenic heterozygous mutations have been discovered in human LMX1B, yet their impact on brain development has not been investigated. Here, we developed mouse models with different LMX1B DNA-binding missense mutations. Missense heterozygosity effected highly specific deficits in the postnatal maturation of forebrain serotonin axon arbors, primarily in the hippocampus and motor cortex, which was associated with spatial memory defects. Digital Genomic Footprinting (DGF) revealed that missense heterozygosity caused complete loss of Lmx1b motif protection and chromatin accessibility at sites enriched for a distal active enhancer/active promoter histone signature and homeodomain binding motifs; at other bound Lmx1b motifs, varying levels of losses, gains or unchanged accessibility were found. The spectrum of footprint changes was strongly associated with synapse and axon genes. Lmx1b missense heterozygosity further caused wide disruption of Lmx1b-dependent regulatory networks comprising diverse TFs. These findings suggest Lmx1b missense heterozygosity forces complex dominant negative-like and hypomorphic perturbations on serotonergic regulatory element TF binding and accessibility. Our work illustrates the power of DGF for gaining insight into how TF missense mutations disrupt regulatory networks within neuronal epigenomes.
Project description:Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic serotonin (5-HT) neuron development; over two hundred pathogenic heterozygous mutations have been discovered in human LMX1B, yet their impact on brain development has not been investigated. Here, we developed mouse models with different LMX1B DNA-binding missense mutations. Missense heterozygosity effected highly specific deficits in the postnatal maturation of forebrain serotonin axon arbors, primarily in the hippocampus and motor cortex, which was associated with spatial memory defects. Digital Genomic Footprinting (DGF) revealed that missense heterozygosity caused complete loss of Lmx1b motif protection and chromatin accessibility at sites enriched for a distal active enhancer/active promoter histone signature and homeodomain binding motifs; at other bound Lmx1b motifs, varying levels of losses, gains or unchanged accessibility were found. The spectrum of footprint changes was strongly associated with synapse and axon genes. Lmx1b missense heterozygosity further caused wide disruption of Lmx1b-dependent regulatory networks comprising diverse TFs. These findings suggest Lmx1b missense heterozygosity forces complex dominant negative-like and hypomorphic perturbations on serotonergic regulatory element TF binding and accessibility. Our work illustrates the power of DGF for gaining insight into how TF missense mutations disrupt regulatory networks within neuronal epigenomes.
Project description:Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic serotonin (5-HT) neuron development; over two hundred pathogenic heterozygous mutations have been discovered in human LMX1B, yet their impact on brain development has not been investigated. Here, we developed mouse models with different LMX1B DNA-binding missense mutations. Missense heterozygosity effected highly specific deficits in the postnatal maturation of forebrain serotonin axon arbors, primarily in the hippocampus and motor cortex, which was associated with spatial memory defects. Digital Genomic Footprinting (DGF) revealed that missense heterozygosity caused complete loss of Lmx1b motif protection and chromatin accessibility at sites enriched for a distal active enhancer/active promoter histone signature and homeodomain binding motifs; at other bound Lmx1b motifs, varying levels of losses, gains or unchanged accessibility were found. The spectrum of footprint changes was strongly associated with synapse and axon genes. Lmx1b missense heterozygosity further caused wide disruption of Lmx1b-dependent regulatory networks comprising diverse TFs. These findings suggest Lmx1b missense heterozygosity forces complex dominant negative-like and hypomorphic perturbations on serotonergic regulatory element TF binding and accessibility. Our work illustrates the power of DGF for gaining insight into how TF missense mutations disrupt regulatory networks within neuronal epigenomes.
Project description:To identify chromatin mechanisms of neuronal differentiation, we characterized the relationship between chromatin accessibility and gene expression in cerebellar granule neurons (CGNs) of the developing mouse. We used DNase-seq to globally map accessibility of cis-regulatory elements and RNA-seq to profile transcript abundance at key points in postnatal neuronal differentiation in vivo and in culture. We observed thousands of chromatin accessibility changes as CGNs differentiated and determined that many of these regions function as stage-specific neuronal enhancers. Motif discovery within differentially accessible chromatin regions suggested a novel role for the Zic family of transcription factors in CGN maturation, and we confirmed the association of Zic with these elements by ChIP-seq. Knockdown of Zic1 and Zic2 indicated Zic transcription factors are required to coordinate mature neuronal gene expression patterns. These data reveal chromatin dynamics at thousands of gene regulatory elements that facilitate gene expression patterns necessary for neuronal differentiation and function. Biological triplicate DNase-seq and RNA-seq samples from 3 in vivo cerebellum developmental stages (P7, P14, P60) and 3 cultured CGN stages (isolated granule neuron precursors, +3DIV, and +7DIV) obtained. Zic1 and Zic2 were separately knocked down by lentiviral shRNA in cultured CGNs followed by RNA-seq (2 biological replicates per KD and 2 controls). Zic1/2 ChIP-seq was performed with in vivo cerebellum at two developmental stages (P7 and P60) in duplicate with matching input and IgG controls.
Project description:Neuronal programming by forced expression of transcription factors (TFs) holds promise for clinical applications of regenerative medicine. However, the mechanisms by which TFs coordinate their activities on the genome and control distinct neuronal fates remain obscure. Using direct neuronal programming of embryonic stem cells, we dissected the contribution of a series of TFs to specific neuronal regulatory programs. We deconstructed the Ascl1-Lmx1b-Foxa2-Pet1 TF combination that has been shown to generate serotonergic neurons and found that stepwise addition of TFs to Ascl1 canalizes the neuronal fate into a diffuse monoaminergic fate. The addition of pioneer factor Foxa2 represses Phox2b to induce serotonergic fate, similar to in vivo regulatory networks. Foxa2 and Pet1 appear to act synergistically to upregulate serotonergic fate. Foxa2 and Pet1 co-bind to a small fraction of genomic regions but mostly bind to different regulatory sites. In contrast to the combinatorial binding activities of other programming TFs, Pet1 does not strictly follow the Foxa2 pioneer. These findings highlight the challenges in formulating generalizable rules for describing the behavior of TF combinations that program distinct neuronal subtypes.
Project description:Neuronal programming by forced expression of transcription factors (TFs) holds promise for clinical applications of regenerative medicine. However, the mechanisms by which TFs coordinate their activities on the genome and control distinct neuronal fates remain obscure. Using direct neuronal programming of embryonic stem cells, we dissected the contribution of a series of TFs to specific neuronal regulatory programs. We deconstructed the Ascl1-Lmx1b-Foxa2-Pet1 TF combination that has been shown to generate serotonergic neurons and found that stepwise addition of TFs to Ascl1 canalizes the neuronal fate into a diffuse monoaminergic fate. The addition of pioneer factor Foxa2 represses Phox2b to induce serotonergic fate, similar to in vivo regulatory networks. Foxa2 and Pet1 appear to act synergistically to upregulate serotonergic fate. Foxa2 and Pet1 co-bind to a small fraction of genomic regions but mostly bind to different regulatory sites. In contrast to the combinatorial binding activities of other programming TFs, Pet1 does not strictly follow the Foxa2 pioneer. These findings highlight the challenges in formulating generalizable rules for describing the behavior of TF combinations that program distinct neuronal subtypes.
Project description:Neurons must function for decades of life but how these non-dividing cells are preserved is poorly understood. Using mouse serotonin (5-HT) neurons as a model, we discovered a novel adult-stage transcriptional program specialized to ensure the preservation of serotonergic connectivity. We uncover a switch in Lmx1b and Pet1 transcription factor function from controlling embryonic axonal growth to sustaining a transcriptomic signature of serotonergic connectivity comprising functionally diverse synaptic and axonal genes. Adult-stage deficiency of Lmx1b and Pet1 caused slowly progressive degeneration of 5-HT synapses and axons, increased susceptibility of 5-HT axons to neurotoxic injury, and abnormal stress responses. Axon degeneration occurred in a die back pattern and was accompanied by accumulation of alpha-synuclein and APP in spheroids and mitochondrial fragmentation without cell body loss. Our findings suggest neuronal connectivity is transcriptionally protected by maintenance of connectivity transcriptomes; progressive decay of such transcriptomes may contribute to age-related diseases of brain circuitry.