Project description:ZFP541 is one of the candidates for a transcriptional regulator during mouse meiotic prophase. In order to address the role of ZFP541, transcriptomes of meiotic prophase-enriched population were compared between Zfp541 +/- and Zfp541 KO testes by RNA-seq. The meiotic prophase-enriched population was isolated from Zfp541 +/- and Zfp541 KO testes at postnatal day 18 (P18), on the Rec8-3FH-GFP KI background by fluorescent sorting of GFP positive cells.
Project description:Due to the DNA binding affinity and interacting ability with HDACs, we wonder if ZFP541 can regulate gene expression during meiotic prophase.
Project description:The DSB-machinery, which induces the programmed DNA double-strand breaks (DSBs) in leptotene and zygotene stages during meiosis, needs to be kept in silence after the initiation of pachytene stage to prevent the activation of DSB checkpoint that may lead to meiotic arrest or apoptosis of germ cells. However, the mechanisms underlying this repression remain largely unknown. Here, we report that ZFP541, a germ cell-specific zinc finger protein, is responsible for the suppression of DSBs formation at late pachytene. Lack of Zfp541 in mice leads to generation of DSBs in late pachytene spermatocytes by DSB formation related-proteins and causes male infertility due to meiotic failure. Plated-based scRNA-seq of Zfp541-/- spermatocytes revealed that ZFP541 negatively regulates many meiotic prophase genes, including genes for DSB formation and their upstream transcriptional regulators, in late pachytene spermatocytes. These results were confirmed by 10x single-cell RNA-seq data on spermatogenesis of Zfp541-/- testes, which suggested that Zfp541 is required for repressing the activation of pre-pachytene gene expression programs from early to late pachytene. ZFP541 ChIP-seq on pachytene and diplotene spermatocytes demonstrated that ZFP541 occupies the promoters of meiosis initiators (e.g., Meiosin and Rxra) and a subset of their downstream genes to repress their transcription, and thus prevent the reactivation of pre-pachytene gene expression programs in pachytene spermatocytes. Thus, our results not only revealed the role of ZFP541 in maintaining the repression of pre-pachytene transcriptional programs in pachytene spermatocytes but also provide new insight into the regulation of meiotic progression by timely turning off pre-pachytene genes.
Project description:The DSB-machinery, which induces the programmed DNA double-strand breaks (DSBs) in leptotene and zygotene stages during meiosis, needs to be kept in silence after the initiation of pachytene stage to prevent the activation of DSB checkpoint that may lead to meiotic arrest or apoptosis of germ cells. However, the mechanisms underlying this repression remain largely unknown. Here, we report that ZFP541, a germ cell-specific zinc finger protein, is responsible for the suppression of DSBs formation at late pachytene. Lack of Zfp541 in mice leads to generation of DSBs in late pachytene spermatocytes by DSB formation related-proteins and causes male infertility due to meiotic failure. Plated-based scRNA-seq of Zfp541-/- spermatocytes revealed that ZFP541 negatively regulates many meiotic prophase genes, including genes for DSB formation and their upstream transcriptional regulators, in late pachytene spermatocytes. These results were confirmed by 10x single-cell RNA-seq data on spermatogenesis of Zfp541-/- testes, which suggested that Zfp541 is required for repressing the activation of pre-pachytene gene expression programs from early to late pachytene. ZFP541 ChIP-seq on pachytene and diplotene spermatocytes demonstrated that ZFP541 occupies the promoters of meiosis initiators (e.g., Meiosin and Rxra) and a subset of their downstream genes to repress their transcription, and thus prevent the reactivation of pre-pachytene gene expression programs in pachytene spermatocytes. Thus, our results not only revealed the role of ZFP541 in maintaining the repression of pre-pachytene transcriptional programs in pachytene spermatocytes but also provide new insight into the regulation of meiotic progression by timely turning off pre-pachytene genes.
Project description:The DSB-machinery, which induces the programmed DNA double-strand breaks (DSBs) in leptotene and zygotene stages during meiosis, needs to be kept in silence after the initiation of pachytene stage to prevent the activation of DSB checkpoint that may lead to meiotic arrest or apoptosis of germ cells. However, the mechanisms underlying this repression remain largely unknown. Here, we report that ZFP541, a germ cell-specific zinc finger protein, is responsible for the suppression of DSBs formation at late pachytene. Lack of Zfp541 in mice leads to generation of DSBs in late pachytene spermatocytes by DSB formation related-proteins and causes male infertility due to meiotic failure. Plated-based scRNA-seq of Zfp541-/- spermatocytes revealed that ZFP541 negatively regulates many meiotic prophase genes, including genes for DSB formation and their upstream transcriptional regulators, in late pachytene spermatocytes. These results were confirmed by 10x single-cell RNA-seq data on spermatogenesis of Zfp541-/- testes, which suggested that Zfp541 is required for repressing the activation of pre-pachytene gene expression programs from early to late pachytene. ZFP541 ChIP-seq on pachytene and diplotene spermatocytes demonstrated that ZFP541 occupies the promoters of meiosis initiators (e.g., Meiosin and Rxra) and a subset of their downstream genes to repress their transcription, and thus prevent the reactivation of pre-pachytene gene expression programs in pachytene spermatocytes. Thus, our results not only revealed the role of ZFP541 in maintaining the repression of pre-pachytene transcriptional programs in pachytene spermatocytes but also provide new insight into the regulation of meiotic progression by timely turning off pre-pachytene genes.
Project description:ZFP541 is assumed to possess putative DNA-binding domains and associated with histone deacetylases, implying it plays a role in regulation of transcription via modulation of chromatin status. Therefore, we used ChIP-seq to search for targets of ZFP541 in meiotic prophase of mouse spermatocytes.
Project description:Here we used laser cutting microdissection and RNA amplification to profile the gene expression in wildtype female germaria and male apex of the testes. These tissue contain germline stem cells and early dividing germ cells. Our goal was to identify genes expressed in these cell types. A direct microarray design of laser cut germaria vs laser cut apex of testes. Four biological replicates are included with two dye-swaps.