Project description:This SuperSeries is composed of the following subset Series: GSE18657: Response to nicotine (100 µM) in heads of the tobacco aphid Myzus persicae GSE18658: Response to nicotine (250 µM) in heads of the tobacco aphid Myzus persicae Refer to individual Series
Project description:Response of the aphid head transcriptome to nicotine in artificial diets (250 µM nicotine, 24 hours feeding) Two condition experiment: heads of aphids feeding on control diet vs heads of aphids feeding on 250 µM nicotine containing diet
Project description:Response of the aphid head transcriptome to nicotine in artificial diets (100 µM nicotine, 24 hours feeding) Two condition experiment: heads of aphids feeding on control diet vs heads of aphids feeding on 100 µM nicotine containing diet
Project description:Lineages of the generalist hemipteran herbivore Myzus persicae (green peach aphid) that have expanded their host range to include tobacco often have elevated nicotine tolerance. The tobacco-adapted M. persicae lineage used in this study was able to reproduce on nicotine-containing artificial diets at concentrations that were 15-fold higher than those that were lethal to a non-adapted M. persicae lineage. Fecundity of the nicotine-tolerant M. persicae lineage was increased by 100 μM nicotine in artificial diet, suggesting that this otherwise toxic alkaloid can serve as a feeding stimulant at low concentrations. This lineage also was pre-adapted to growth on tobacco, exhibiting no drop in fecundity when it was moved onto tobacco from a different host plant. Although growth of the non-tobacco-adapted M. persicae lineage improved after three generations on tobacco, this higher reproductive rate was not associated with increased nicotine tolerance. Myzus persicae gene expression microarrays were used to identify transcripts that are up-regulated in response to nicotine in the tobacco-adapted lineage. Induced expression was found for CYP6CY3, which detoxifies nicotine in M. persicae, other genes encoding known classes of detoxifying enzymes, and genes encoding secreted M. persicae salivary proteins.
Project description:BACKGROUND:The green peach aphid (GPA), Myzus persicae, is economically one of the most threatening pests in pepper cultivation, which not only causes direct damage but also transmits many viruses. Breeding aphid resistant pepper varieties is a promising and environmentally friendly method to control aphid populations in the field and in the greenhouse. Until now, no strong sources of resistance against the GPA have been identified. Therefore the main aims of this study were to identify pepper materials with a good level of resistance to GPA and to elucidate possible resistance mechanisms. RESULTS:We screened 74 pepper accessions from different geographical areas for resistance to M. persicae. After four rounds of evaluation we identified one Capsicum baccatum accession (PB2013071) as highly resistant to M. persicae, while the accessions PB2013062 and PB2012022 showed intermediate resistance. The resistance of PB2013071 resulted in a severely reduced uptake of phloem compared to the susceptible accession, as determined by Electrical Penetration Graph (EPG) studies. Feeding of M. persicae induced the expression of callose synthase genes and resulted in callose deposition in the sieve elements in resistant, but not in susceptible plants. CONCLUSIONS:Three aphid resistant pepper accessions were identified, which will be important for breeding aphid resistant pepper varieties in the future. The most resistant accession PB2013071 showed phloem-based resistance against aphid infestation.
Project description:The green peach aphid (Myzus persicae) is a phloem-feeding insect that causes economic damage on a wide array of crops. Using a luminol-based assay, a superoxide-responsive reporter gene (Zat12::luciferase), and a probe specific to hydrogen peroxide (HyPer), we demonstrated that this aphid induces accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. Similar to the apoplastic oxidative burst induced by pathogens, this response to aphids was rapid and transient, with two peaks occurring within 1 and 4 hr after infestation. Aphid infestation also induced an oxidative response in the cytosol and peroxisomes, as measured using a redox-sensitive variant of green fluorescent protein (roGFP2). This intracellular response began within minutes of infestation but persisted 20 hr or more after inoculation, and the response of the peroxisomes appeared stronger than the response in the cytosol. Our results suggest that the oxidative response to aphids involves both apoplastic and intracellular sources of ROS, including ROS generation in the peroxisomes, and these different sources of ROS may potentially differ in their impacts on host suitability for aphids.
Project description:Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.
Project description:The evolution of resistance to insecticides threatens the sustainable control of many of the world's most damaging insect crop pests and disease vectors. To effectively combat resistance, it is important to understand its underlying genetic architecture, including the type and number of genetic variants affecting resistance and their interactions with each other and the environment. While significant progress has been made in characterizing the individual genes or mutations leading to resistance, our understanding of how genetic variants interact to influence its phenotypic expression remains poor. Here, we uncover a mechanism of insecticide resistance resulting from transposon-mediated insertional mutagenesis of a genetically dominant but insecticide-susceptible allele that enables the adaptive potential of a previously unavailable recessive resistance allele to be unlocked. Specifically, we identify clones of the aphid pest Myzus persicae that carry a resistant allele of the essential voltage-gated sodium channel (VGSC) gene with the recessive M918T and L1014F resistance mutations, in combination with an allele lacking these mutations but carrying a Mutator-like element transposon insertion that disrupts the coding sequence of the VGSC. This results in the down-regulation of the dominant susceptible allele and monoallelic expression of the recessive resistant allele, rendering the clones resistant to the insecticide bifenthrin. These findings are a powerful example of how transposable elements can provide a source of evolutionary potential that can be revealed by environmental and genetic perturbation, with applied implications for the control of highly damaging insect pests.