Genomics

Dataset Information

0

FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) analysis of chromatin accessibility in kidney bean under drought stress


ABSTRACT: Purpose: To identify nucleosome-depleted regions in response to drought in the kidney bean, a genome-wide chromatin profiling strategy was implemented. A better understanding of these OCRs (Open chromatin regions) will be useful in exploring potential genomic regions for crop improvement. Results: Using a comprehensive FAIRE-Seq approach, nucleosome-free chromatin regions were explored in kidney bean (Phaseolus vulgaris. L) in response to both drought and rewatering stress. In all samples, FAIRE peaks (>50%) were enriched in the promoter regions. The drought samples showed peaks very distinct from control and rewatered samples, which showed peaks predominantly at the transcription start site (TSS). Drought and heat-responsive genes and transcription factors were identified within the flanking region of differential peaks. When drought was compared to control, it showed upregulated differential peaks primarily in the promoter and distal intergenic regions. Conclusion: By analyzing FAIRE we are able to identify distinct genomic regions corresponding to droughts and controls. Upstream regions of genes play a significant role in drought stress response. Our data suggest that promoter regions of >2 kb, downstream regions of <= 300, and distant regulatory regions are predominant during the upregulation of drought stress. It would also be helpful to note that genomic regions vary in response to drought, and distal intergenic regions may also be involved in drought responses. Understanding plant genomes and epigenomics could help us develop varieties that can withstand extreme weather conditions.

ORGANISM(S): Phaseolus vulgaris

PROVIDER: GSE187025 | GEO | 2023/11/08

REPOSITORIES: GEO

Dataset's files

Source:
Action DRS
Other
Items per page:
1 - 1 of 1

Similar Datasets

2024-04-30 | PXD041759 | Pride
2019-12-31 | GSE123381 | GEO
2014-11-26 | GSE63636 | GEO
| PRJNA401329 | ENA
2022-03-09 | GSE197777 | GEO
2024-09-19 | GSE242453 | GEO
2024-09-19 | GSE242459 | GEO
2024-09-19 | GSE242455 | GEO
2017-08-24 | E-MTAB-5745 | biostudies-arrayexpress
2018-02-14 | GSE102920 | GEO