Pneumococcal BgaA promotes host organ bleeding and coagulation in mouse sepsis model
Ontology highlight
ABSTRACT: Streptococcus pneumoniae is a major cause of invasive diseases, such as pneumoniae, meningitis and sepsis resulting in high mortality. The molecular mechanisms and disease developing mechanism underlying pneumococcal infection remain unknown. Previously, we reported that S. pneumoniae β-galactosidase (BgaA) is evolutionarily conserved and contributes to pneumococcal pathogenesis in mouse sepsis model. BgaA is also known to play a role in pneumococcal growth, resistance to human neutrophil opsonophagocytic killing, bacterial adherence to human epithelial cells. In this study, since the detailed role that BgaA plays in sepsis remain unknown, we focused on the role of BgaA in pneumococcal sepsis. Our in vitro assays showed that BgaA promoted bacterial association with human lung epithelial and vascular endothelium cells. BgaA also contributes to pneumococcal survival with human blood by suppressing neutrophils killing, whereas BgaA did not affect pneumococcal survival in mouse blood. In a mouse sepsis model, mice infected with S. pneumoniae bgaA deletion mutant strain exhibited up-regulated host innate immunity pathways, and suppressed tissue damages and blood coagulation as compared to mice infected with the wild-type strain. These results suggest that BgaA works as a multifunctional virulence factor for inducing host tissue damages and blood coagulation. BgaA could be an attractive target for drug and vaccine development.
ORGANISM(S): Mus musculus
PROVIDER: GSE190418 | GEO | 2022/07/18
REPOSITORIES: GEO
ACCESS DATA