Transcriptomic analysis of Pseudomonas aeruginosa in response to host antimicrobial peptide S100A12
Ontology highlight
ABSTRACT: Pseudomonas aeruginosa is a gram negative, opportunistic pathogen, which is the major cause of corneal infections in India and worldwide. Being categorised in the critical group of antibiotic resistant species, it has prompted significance rise in research to develop alternative therapeutics. One such alternative to combat bacterial infections is antimicrobial peptides (AMPs). This study aims to investigate the role of S100A12, a host defence peptide against PAO1. It was also seen to inhibit the bacterial growth of PAO1 in vitro as seen from the colony forming units. Our study sheds light on how S100A12 impacts Pseudomonas and that it might have the potential to be used as therapeutic intervention in addition to antibiotics in future.
Project description:Our study showed that selected pillararene was able to decrease the level of cell death and demage caused to human A549 epithelial cells by Pseudomonas aeruginosa PAO1 infection. To further understand the protective effects of pillararene during bacterial infections, we analyzed total mRNA isolated from the A549 epithelial cells. Our study showed that pillararene alone had minimal effect on A549 epithelial cells. The addition of PAO1 to A549 cells greatly altered expression levels. The addition of pillararene to infected A549 epithelial cells displayed a concentration-dependent reduction in the inflammatory response.
Project description:Pseudomonas aeruginosa is an opportunistic human pathogen, infecting immuno-compromised patients and causing persistent respiratory infections in people affected from cystic fibrosis. Pseudomonas strain Pseudomonas aeruginosa PA14 shows higher virulence than Pseudomonas aeruginosa PAO1 in a wide range of hosts including insects, nematodes and plants but the precise cause of this difference is not fully understood. Little is known about the host response upon infection with Pseudomonas and whether or not transcription is being affected as a host defense mechanism or altered in the benefit of the pathogen. In this context the social amoeba Dictyostelium discoideum has been described as a suitable host to study virulence of Pseudomonas and other opportunistic pathogens.
Project description:Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO3-) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Anaerobic growth of PAO1 reached higher cell density in the presence of vitamin B12, an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape. These results suggest that vitamin B12, the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth of P. aeruginosa with normal cell division. We used microarray to elucidate the global gene expression profiles underlying vitamin B12-induced changes in bacterial cell shape and growth-associated properties. Gene expression profiles of PAO1 grown in LBN (LB+NO3-) or LBN supplemented with 1 microM vitamin B12 are compared.
Project description:Pseudomonas aeruginosa bacterial and (outer membrane vesicles) extracellular vesicles proteome were analysed. Different types of PAO1, dellys and pJNlys were lysed in 1% (v/v) sodium dodecyl sulphate and virulence factors analysed
Project description:ErfA is a transcription factor of Pseudomonas aeruginosa. We here define the genome-wide binding sites of ErfA by DAP-seq in Pseudomonas aeruginosa PAO1 and IHMA87, Pseudomonas chlororaphis PA23, Pseudomonas protegens CHA0 and Pseudomonas putida KT2440.
Project description:Pseudomonas aeruginosa is one of the most frequent pathogen dominant in complicated urinary tract infections (UTI). To unravel the adaptation strategies of P. aeruginosa to the conditions in the urinary tract and to define the underlying regulatory network an artificial growth system mimicking the conditions in the urinary tract was established. Transcriptome analyses were used to investigate the physiological status of P. aeruginosa under this conditions. We performed comparisons to identify genes induced under artificial urinary tract conditions to unravel the adaptive strategies and the underlying regulatory network used by Pseudomonas aeruginosa during urinary tract infections using Affimetrix GeneChips. Pseudomonas aeruginosa wild type strain PAO1 was grown in an artificial in vitro growth system mimicking the conditions in the urinary tract. Therefore, biofilms were grown on the surface of membrane filters placed on agar plates at 37 °C up to the late logarithmic state under aerobic and anaerobic conditions (incubated in an anaerobic beanch). An artificial urine medium (AUM) simulating the averaged urine of an human adult was used as nutrient souce. 10-fold diluted Luria Bertani (LB)-medium was used as reference medium. For growth under oxygen depletion the media were supplemented with 50 mM KNO3 to sustain anaerobic respiration. The biofilms were harveted at this time points and resuspsended in 0.9% (w/v) NaCl. The OD578 of biofilm suspension was 0.8 for all tested conditions. First comparison: Identification of genes induced or repressed under aerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown aerobically for 18 h to the late logarithmic phase in biofilms on AUM with the transcriptome profile of the PAO1 strain, which was grown aerobically for 18 h to the late logarithmic phase in biofilms on 10-fold diluted LB. Second comparison: Identification of genes induced or repressed under anaerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown anaerobically for 2 days up to the late logarithmic phase in biofilms on AUM supplemented with 50 mM nitrate with the transcriptome profile of the PAO1 strain, which was grown anaerobically for 2 days up to the late logarithmic phase in biofilms on 10-fold diluted LB supplemented with 50 mM nitrate.
Project description:Previous synthesized Pt NPs were selected to evaluate the influences on bacterial resistance, and a typical pathogenic microbe P. aeruginosa was chosen as model bacteria. After 60-day PtNPs exposure, we found under 12.5 μg/mL of platinum nanoparticles (PtNPs) exposure for ~7200 generations, the IC50 of evolved Pseudomonas aeruginosa PAO1 to imipenem (IPM) and ciprofloxacin (CIP) reduced 77.0% and 87.8%, respectively. Interestingly, long-term of PtNPs exposure arose the bacterial susceptibility on antibiotics. We then performed gene expression profiling analysis using data obtained from RNA-seq.
Project description:Pseudomonas aeruginosa PAO1 contacted with and without poplar roots gene expression Poplar contacted with and without PAO1 gene expression. All samples cultured in 1 x hrp + 0.25 % sucrose Keywords: Contact with different species
Project description:The purpose of this study was to define the TZD effect in Pseudomonas aeruginosa. Transcriptional profiling of Pseudomonas aeruginosa wild-type strain,reference strain PAO1, as control Vs. PAO1 strain exposed to a final 0.02mM of TZD derivative ((z)-5-octylidenethiazolidine-2,4-dione).