Project description:At 3-months after after traumatic brain injury, messenger RNA sequencing was performed on samples from ipsilateral thalamus and perilesional cortex of selected rats with the chronic inflammatory endophenotype, and sham-operated controls.
Project description:At 3-months after after traumatic brain injury, small RNA sequencing was performed on samples from ipsilateral thalamus and perilesional cortex of selected rats with the chronic inflammatory endophenotype, and sham-operated controls.
Project description:mRNA sequencing of perilesional cortex and ipsilateral thalamus at 3-months after lateral fluid-percussion injury or sham-operation
Project description:Small RNA sequencing of perilesional cortex and ipsilateral thalamus at 3-months after lateral fluid-percussion injury or sham-operation
Project description:mRNA-seq and miRNA-seq of perilesional cortex and ipsilateral thalamus at 3-months after lateral fluid-percussion injury or sham-operation
Project description:Traumatic brain injury (TBI) causes neuroendocrine dysregulation in up to 40% of humans, which is related to impaired function of the hypothalamo-hypophyseal axis and contributes to TBI-related co-morbidities. Our objective was to investigate whether hypophyseal atrophy can be recapitulated in rat lateral fluid-percussion injury model of human TBI. High-resolution structural magnetic resonance images (MRI) were acquired from rats at 2 days and 5 months post-TBI. To measure the lobe-specific volumetric changes, manganese-enhanced MRI (MEMRI) scans were acquired from rats at 8 months post-TBI, which also underwent the pentylenetetrazol (PTZ) seizure susceptibility and Morris water-maze spatial memory tests. MRI revealed no differences in the total hypophyseal volume between TBI and controls at 2 days, 5 months or 8 months post-TBI. Surprisingly, MEMRI at 8 months post-TBI indicated a 17% reduction in neurohypophyseal volume in the TBI group as compared to controls (1.04 ± 0.05 mm3 vs 1.25 ± 0.05 mm3, p < 0.05). Moreover, neurohypophyseal volume inversely correlated with the number of PTZ-induced epileptiform discharges and the mean latency to platform in the Morris water-maze test. Our data demonstrate that TBI leads to neurohypophyseal lobe-specific atrophy and may serve as a prognostic biomarker for post-TBI outcome.
Project description:Lateral fluid percussion injury (LFPI) in rats is used to model post-traumatic epilepsy (PTE), with spontaneous seizures occurring in up to ½ of the subjects. Using the kindling paradigm, we examined whether animals without detectable seizures had an altered seizure susceptibility. Male Sprague Dawley rats were subjected to LFPI. Seven-nine months later, spontaneous seizures were monitored for two weeks. Afterward, the animals underwent kindling of basolateral amygdala. For kindling outcomes, the animals were categorized based on the 95% confidence intervals of mean number trials to kindling (ie 3 consecutive stage 4-5 seizures). Spontaneous seizures were detected in 7 out of 24 rats. There was no correlation between the severity of LFPI and either baseline afterdischarge properties, or kindling rates. Six LFPI rats kindled at a rate comparable to those in sham-LFPI (n = 10) and in naïve (n = 7) subjects. Ten LFPI rats kindled faster and 8-slower than controls. None of slow-kindling rats had spontaneous seizures during the prekindling monitoring. During the same period, six fast-kindling and three normal-kindling rats had been seizure-free. Thus, kindling reveals a diversity to seizure susceptibility after LFPI beyond an overt seizure symptomatology, ranging from the increased susceptibility to the increased resistance.
Project description:Traumatic brain injury (TBI) causes acute and lasting impacts on the brain, driving pathology along anatomical, cellular, and behavioral dimensions. Rodent models offer an opportunity to study the temporal progression of disease from injury to recovery. Transcriptomic and epigenomic analysis were applied to evaluate gene expression in ipsilateral hippocampus at 1 and 14 days after sham (n = 2 and 4, respectively per time point) and moderate lateral fluid percussion injury (n = 4 per time point). This enabled the identification of dynamic changes and differential gene expression (differentially expressed genes; DEGs) modules linked to underlying epigenetic response. We observed acute signatures associated with cell death, astrocytosis, and neurotransmission that largely recovered by 2 weeks. Inflammation and immune signatures segregated into upregulated modules with distinct expression trajectories and functions. Whereas most down-regulated genes recovered by 14 days, two modules with delayed and persistent changes were associated with cholesterol metabolism, amyloid beta clearance, and neurodegeneration. Differential expression was paralleled by changes in histone H3 lysine residue 4 trimethylation at the promoters of DEGs at 1 day post-TBI, with the strongest changes observed for inflammation and immune response genes. These results demonstrate how integrated genomics analysis in the pre-clinical setting has the potential to identify stage-specific biomarkers for injury and/or recovery. Though limited in scope here, our general strategy has the potential to capture pathological signatures over time and evaluate treatment efficacy at the systems level.
Project description:Nerve injury-induced changes in gene expression in primary sensory neurons, such as trigeminal ganglion (TG) neurons, play a critical role in the genesis of neuropathic pain. Therefore, understanding the molecular mechanisms underlying these changes in the TGs following peripheral nerve injury will enable us to develop a new avenue for managing trigeminal-mediated neuropathic pain. Studies have highlighted the involvement of miRNA-mediated modulation in a wide range of diseases, leading to the exploration of miRNA-based therapeutics as a potential treatment strategy. Here, in this RNA-seq database, we have found that microRNA-216a-3p (miR-216a-3p) and miR-32-5p (miR-32-5p), which are downregulated in injured TGs, are novel functional RNAs involved in regulating trigeminal-mediated neuropathic pain. Histone methylation-mediated miRNA downregulation in TG neurons regulates trigeminal neuropathic pain by targeting either STIM1 (H3K27me3/SOX10/miR-216a-3p/STIM1) or Cav3.2 (GR/miR-32-5p/Cav3.2) channels. Moreover, we found that miR-323-3p exhibited the most significant upregulation in the injured TG. Understanding the mechanistic role of the PRMT2/FOXA2/miR-323-3p/Kv2.1 signaling axis in sensory neurons may advance the discovery of novel therapeutic strategies for neuropathic pain.
Project description:Traumatic brain injury (TBI) is a leading cause of death and disability. Yet, despite immense research efforts, treatment options remain elusive. Translational failures in TBI are often attributed to the heterogeneity of the TBI population and limited methods to capture these individual variabilities. Advances in machine learning (ML) have the potential to further personalized treatment strategies and better inform translational research. However, the use of ML has yet to be widely assessed in pre-clinical neurotrauma research, where data are strictly limited in subject number. To better establish ML's feasibility, we utilized the fluid percussion injury (FPI) portion of the rich, rat data set collected by Operation Brain Trauma Therapy (OBTT), which tested multiple pharmacological treatments. Previous work has provided confidence that both unsupervised and supervised ML techniques can uncover useful insights from this OBTT pre-clinical research data set. As a proof-of-concept, we aimed to better evaluate the multi-variate recovery profiles afforded by the administration of nine different experimental therapies. We assessed supervised pairwise classifiers trained on a pre-processed data set that incorporated metrics from four feature groups to determine their ability to correctly identify specific drug treatments. In all but one of the possible pairwise combinations of minocycline, levetiracetam, erythropoietin, nicotinamide, and amantadine, the baseline was outperformed by one or more supervised classifiers, the exception being nicotinamide versus amantadine. Further, when the same methods were employed to assess different doses of the same treatment, the ML classifiers had greater difficulty in understanding which treatment each sample received. Our data serve as a critical first step toward identifying optimal treatments for specific subgroups of samples that are dependent on factors such as types and severity of traumatic injuries, as well as informing the prediction of therapeutic combinations that may lead to greater treatment effects than individual therapies.